Accesso libero

The steady-state impedance operator of a linear periodically time-varying one-port network and its determination

International Journal of Applied Mathematics and Computer Science's Cover Image
International Journal of Applied Mathematics and Computer Science
Robot Control Theory (special section, pp. 519 - 588), Cezary Zieliński (Ed.)
INFORMAZIONI SU QUESTO ARTICOLO

Bittanti, S. and Colaneri, P. (1999). Periodic Control. John Wiley Encyclopedia of Electrical and Electronic Engineering, Wiley, New York, NY.10.1002/047134608X.W1030Search in Google Scholar

Bittanti, S. and Colaneri, P. (2000). Invariant representations of discrete-time periodic systems, Automatica 36(12): 1777-1793.10.1016/S0005-1098(00)00087-XSearch in Google Scholar

Bru, R., Romero, S. and Sanchez, E. (2004). Structural properties of positive periodic discrete-time linear systems: Canonical forms, Applied Mathematics and Computation 153(3): 697-719.10.1016/S0096-3003(03)00665-9Search in Google Scholar

Chen, T. and Qiu, L. (1997). Linear periodically time-varying discrete-time systems: Aliasing and LTI approximations, Systems and Control Letters 30(5): 225-235.10.1016/S0167-6911(97)00006-6Search in Google Scholar

Doroslovacki, M., Fan, H. and Yao, L. (1998). Wavelet-based identification of linear discrete-time systems: Robustness issue, Automatica 34(12): 1637-1640.10.1016/S0005-1098(98)80020-4Search in Google Scholar

Hu, S., Meinke, K., Chen, R. and Huajiang, O. (2007). Iterative estimators of parameters in linear models with partially variant coefficients, International Journal of Applied Mathematics and Computer Science 17(2): 179-187.10.2478/v10006-007-0017-0Search in Google Scholar

Kaczorek, T. (2001). Externally and internally positive time-varying linear systems, International Journal of Applied Mathematics and Computer Science 11(4): 957-964.Search in Google Scholar

Kłosiński, R. (2005). Application of an identification algorithm for optimal control of compensation circuits, Proceedings of the International Conference on Power Electronics and Intelligent Control for Energy Conservation, PELINCEC 2005, Warsaw, Poland, pp. 1-6.Search in Google Scholar

Kłosiński, R. (2006). Periodically time-varying two-terminals at a steady state, description and identification, Proceedings of the 13th IEEE International Conference on Electronics, Circuits and Systems, ICECS 2006, Nice, France, pp. 284-287.Search in Google Scholar

Kłosiński, R. (2007). Periodically variable two-terminal impedance description and measuring methods, Metrology and Measurement Systems 14(2): 375-390.Search in Google Scholar

Kłosiński, R. and Kozioł, M. (2007). Reconstruction of non-linearly deformed periodic signals using inverse circular parametric operators, Proceedings of the IEEE Instrumentation and Measurement Technology Conference, IMTC 2007, Warsaw, Poland, pp. 1-6.Search in Google Scholar

Liu, K. (1997). Identification of linear time-varying systems, Journal of Sound and Vibration 204(4): 487-505.10.1006/jsvi.1997.1105Search in Google Scholar

Liu, K. (1999). Extension of modal analysis to linear time-varying systems, Journal of Sound and Vibration 226(1): 149-167.10.1006/jsvi.1999.2286Search in Google Scholar

Liu, K. and Deng, L. (2005). Experimental verification of an algorithm for identification of linear time-varying systems, Journal of Sound and Vibration 279(1): 1170-1180.10.1016/j.jsv.2004.01.040Search in Google Scholar

Liu, M., Tse, C. K. and Wu, J. (2003). A wavelet approach to fast approximation of steady-state waveforms of power electronics circuits, International Journal of Circuit Theory and Applications 31(6): 591-610.10.1002/cta.252Search in Google Scholar

Mehr, A. S. and Chen, T. (2002). Representations of linear periodically time-varying and multirate systems, IEEE Transactions on Signal Processing 50(9): 2221-2229.10.1109/TSP.2002.801882Search in Google Scholar

Meyer, C. D. (2000). Matrix Analysis and Applied Linear Algebra, SIAM, Philadelphia, PA.10.1137/1.9780898719512Search in Google Scholar

Meyer, R. A. and Burrus, C. S. (1975). A unified analysis of multirate and periodically time-varying digital filters, IEEE Transactions on Circuits and Systems 22(3): 162-168.10.1109/TCS.1975.1084020Search in Google Scholar

Mikołajuk, K. and Staroszczyk, Z. (2003). Time-frequency approach to analysis of time varying dynamic systems, Przegląd Elektrotechniczny 79(10): 764-767.Search in Google Scholar

Mikołajuk, K. and Staroszczyk, Z. (2004). Periodical variability in power systems: Small-signal models, L'Energia Electtrica 81(5-6): 97-102.Search in Google Scholar

Shenoy, R. G., Burnside, D. and Parks, T. (1994). Linear periodic systems and multirate filter design, IEEE Transactions on Signal Processing 42(9): 2242-2256.10.1109/78.317847Search in Google Scholar

Siwczyński, M. (1987). Analysis of nonlinear systems with concentrated and distributed parameters by a new numerical operator method in time and frequency domain, Proceedings of Internationales Wissenschaftliches Kolloquium 1987, Ilmenau, Germany, pp. 759-762.Search in Google Scholar

Siwczyński, M. (1995). Optimization Methods in Power Theory of Electrical Networks, Monograph No. 183, Cracow University of Technology, Cracow, (in Polish).Search in Google Scholar

Siwczyński, M. and Kłosiński, R. (1997a). Current and voltage wave-form optimization with non-linear deformations for real voltage sources, COMPEL 16(2): 71-83.10.1108/03321649710172761Search in Google Scholar

Siwczyński, M. and Kłosiński, R. (1997b). Synthesis of linear inertialless periodically time varying circuits for optimal compensation of non-linear distortions, Proceedings of the 9th International Symposium on Theoretical Electrical Engineering, ISTET'97, Palermo, Italy, pp. 560-563.Search in Google Scholar

Siwczyński, M., Pasko, M. and Kłosiński, R. (1993). Current minimization of the non-ideal voltage source with periodically time-varying parameters by means of an active compensator, Applied Mathematics and Computer Science 3(2): 329-340.Search in Google Scholar

Staroszczyk, Z. (2002). Power system nonstationarity and accurate power system identification procedures, Proceedings of the International Conference on Harmonics and Quality of Power, Rio de Janeiro, Brasil, pp. 1-8.Search in Google Scholar

Staroszczyk, Z. and Mikołajuk, K. (2004). Periodically time variance power systems impedance—Description and identification, Przegląd Elektrotechniczny 80(6): 521-526.Search in Google Scholar

Tam, K. C., Wong, S. C. and Tse, C. K. (2006). A wavelet-based piecewise approach for steady-state analysis of power electronics circuits, International Journal of Circuit Theory and Applications 34(5): 559-582.10.1002/cta.375Search in Google Scholar

Verhagen, M. and Yu, X. (1995). A class of subspace model identification algorithms to identify periodically and arbitrarily time-varying systems, Automatica 31(2): 201-216.10.1016/0005-1098(94)00091-VSearch in Google Scholar

Zadeh, L. A. (1950). Frequency analysis of variable networks, Proceedings of the Institute of Radio Engineers 38: 291-299.10.1109/JRPROC.1950.231083Search in Google Scholar

ISSN:
1641-876X
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Mathematics, Applied Mathematics