Multiwavelet and multiwavelet packet analysis in qualitative assessment of the chaotic states
14 ago 2025
INFORMAZIONI SU QUESTO ARTICOLO
Categoria dell'articolo: Research Article
Pubblicato online: 14 ago 2025
Pagine: 13 - 26
Ricevuto: 06 mar 2025
Accettato: 24 giu 2025
DOI: https://doi.org/10.2478/sgem-2025-0017
Parole chiave
© 2025 Kamila Jarczewska, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11

Figure 12

Figure 13

Figure 14

Figure 15

Figure 16

Figure 17

Figure 18
![Bifurcation diagram (a) and variation function of max. Lyapunov exponent (b) for the system described by equation (18)
L
=
0.5
m
,
m
=
1
kg
,
k
=
100
N
m
,
k
1
=
1,000
N
m
3
,
ω
=
10
rad/s
\left(\phantom{\rule[-0.75em]{}{0ex}},L=0.5\hspace{.5em}\text{m},\hspace{.5em}m=1\hspace{.5em}\text{kg},\hspace{.5em}k=\frac{100\hspace{.5em}\text{N}}{m},\hspace{.5em}{k}_{1}=\frac{\mathrm{1,000}\hspace{.5em}\text{N}}{{m}^{3}},\hspace{.5em}\omega =10\hspace{.5em}\text{rad/s}\right)
.](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/689cd21dafc50a4de095ea51/j_sgem-2025-0017_fig_018.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250919%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250919T215913Z&X-Amz-Expires=3600&X-Amz-Signature=94f27d7df40da212d8b626929974ffe42de949d6b3546c36991d7f62c6f38cbf&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 19
![Bifurcation diagram (a)and variation function of max. Lyapunov exponent (b) for the system described by equation (18)
L
=
0.5
m
,
m
=
1
kg
,
k
=
100
N
m
,
k
1
=
1,000
N
m
3
,
ω
=
15
rad/s
\left(\phantom{\rule[-0.75em]{}{0ex}},L=0.5\hspace{.5em}\text{m},\hspace{.5em}m=1\hspace{.5em}\text{kg},\hspace{.5em}k=\frac{100\hspace{.5em}\text{N}}{m},\hspace{.5em}{k}_{1}=\frac{\mathrm{1,000}\hspace{.5em}\text{N}}{{m}^{3}},\hspace{.5em}\omega =15\hspace{.5em}\text{rad/s}\right)
.](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/689cd21dafc50a4de095ea51/j_sgem-2025-0017_fig_019.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250919%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250919T215913Z&X-Amz-Expires=3600&X-Amz-Signature=514319d4c88d661358c3778b903e611e69ef8c227dfb7497f5842fbf28cbae83&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 20
![Selected resolution levels j of multiwavelet signal analysis coefficients in pre-critical state P = 25 N (a) and in post-critical state P = 30 N (b) for the system described by equation (18)
L
=
0.5
m
,
m
=
1
kg
,
k
=
100
N
m
,
k
1
=
1,000
N
m
3
,
ω
=
10
rad/s
\left(\phantom{\rule[-0.75em]{}{0ex}},L=0.5\hspace{.5em}\text{m},\hspace{.5em}m=1\hspace{.5em}\text{kg},\hspace{.5em}k=\frac{100\hspace{.5em}\text{N}}{m},\hspace{.5em}{k}_{1}=\frac{\mathrm{1,000}\hspace{.5em}\text{N}}{{m}^{3}},\hspace{.25em}\omega =10\hspace{.5em}\text{rad/s}\right)
.](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/689cd21dafc50a4de095ea51/j_sgem-2025-0017_fig_020.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250919%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250919T215913Z&X-Amz-Expires=3600&X-Amz-Signature=a1a79154c42ef357d4685c0dc35c27c06a49ad1f2aa93ea5faf2e34ddfbcaeaa&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 21
![Multiwavelet expansion coefficients obtained at resolution level j = 6 in pre-critical state P = 25 N (a) and in post-critical state P = 30 N (b) for the system described by equation (18)
L
=
0.5
m
,
m
=
1
kg
,
k
=
100
N
m
,
k
1
=
1,000
N
m
3
,
ω
=
10
rad/s
\left(\phantom{\rule[-0.75em]{}{0ex}},L=0.5\hspace{.5em}\text{m},\hspace{.5em}m=1\hspace{.5em}\text{kg},\hspace{.5em}k=\frac{100\hspace{.5em}\text{N}}{m},\hspace{.5em}{k}_{1}=\frac{\mathrm{1,000}\hspace{.5em}\text{N}}{{m}^{3}},\hspace{.5em}\omega =10\hspace{.5em}\text{rad/s}\right)
.](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/689cd21dafc50a4de095ea51/j_sgem-2025-0017_fig_021.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250919%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250919T215913Z&X-Amz-Expires=3600&X-Amz-Signature=585d7844fb0e67b30012364c9264f6de362f6f632ae8c5672fd95839ad2f6de4&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 22
![Multiwavelet expansion coefficients obtained at resolution level j = 6 in pre-critical state P = 40 N (a) and in post-critical state P = 55 N (b) for the system described by equation (18)
L
=
0.5
m
,
m
=
1
kg
,
k
=
100
N
m
,
k
1
=
1,000
N
m
3
,
ω
=
15
rad/s
\left(\phantom{\rule[-0.75em]{}{0ex}},L=0.5\hspace{.5em}\text{m},\hspace{.5em}m=1\hspace{.5em}\text{kg},\hspace{.5em}k=\frac{100\hspace{.5em}\text{N}}{m},\hspace{.5em}{k}_{1}=\frac{\mathrm{1,000}\hspace{.5em}\text{N}}{{m}^{3}},\hspace{.5em}\omega =15\hspace{.5em}\text{rad/s}\right)
.](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/689cd21dafc50a4de095ea51/j_sgem-2025-0017_fig_022.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250919%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250919T215913Z&X-Amz-Expires=3600&X-Amz-Signature=2d3234112aed1a00654c9ed80a806856465e89c6f7f23b71c2012c4cfcc9a527&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)