An analytical model to predict water retention curves for granular materials using the grain-size distribution curve
, , e
10 dic 2022
INFORMAZIONI SU QUESTO ARTICOLO
Categoria dell'articolo: Original Study
Pubblicato online: 10 dic 2022
Pagine: 354 - 369
Ricevuto: 01 gen 2022
Accettato: 27 set 2022
DOI: https://doi.org/10.2478/sgem-2022-0025
Parole chiave
© 2022 Linda Bouacida et al., published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 International License.
Figure 1
![Conceptual diagram showing the effect of (a) median particle size of uniform sand and (b) width of particle size distribution, on the shape of the soil-water characteristic curve (SWCC) of sand (Craig H. Benson et al. [14]).](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/64737a0a4e662f30ba53f8b8/j_sgem-2022-0025_fig_001.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250920%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250920T025236Z&X-Amz-Expires=3600&X-Amz-Signature=ba6bb089b5b40e3b31c76d928305cd35ce69c4e280257ceb00a740c48dabb68d&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 2
![Conceptual diagram presenting the effect of (a) the median particle size of uniform sand, and (b) the breadth of particle size distribution, on the parameters α and n (Craig H. Benson et al. [12]).](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/64737a0a4e662f30ba53f8b8/j_sgem-2022-0025_fig_002.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250920%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250920T025236Z&X-Amz-Expires=3600&X-Amz-Signature=ecf3d9e489bc448f149dbe1763ee97e2f94e2ab55b26e1810593621a67a297c2&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 3
![Typical soil water retention curve (Toll [59]).](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/64737a0a4e662f30ba53f8b8/j_sgem-2022-0025_fig_003.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250920%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250920T025236Z&X-Amz-Expires=3600&X-Amz-Signature=8b12518e248a61692c655983a79a977a981db62198625e3a0a9b0e4a91a9e22d&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 4
![Explanatory diagram of the drying and wetting processes in the porous network that is composed of cylinders with radius r; rm is the meniscus radius at the air-water interface (Do. [19]).](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/64737a0a4e662f30ba53f8b8/j_sgem-2022-0025_fig_004.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250920%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250920T025236Z&X-Amz-Expires=3600&X-Amz-Signature=bf58d2c39d6dcbaba93ed84d77114eeacd49667daecb46c4ec45ce70c2c45d86&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 5
![Schematic representation of the tensiometric method for the measurement of suction (Feia et al. [25]).](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/64737a0a4e662f30ba53f8b8/j_sgem-2022-0025_fig_005.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250920%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250920T025236Z&X-Amz-Expires=3600&X-Amz-Signature=fe8636b91e78a8eaf3a6b0f0bd922c85a80a01fb132c4c20901bc3296ef1600c&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 6
![Experimental results used in this study (Feia et al. [25]).](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/64737a0a4e662f30ba53f8b8/j_sgem-2022-0025_fig_006.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250920%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250920T025236Z&X-Amz-Expires=3600&X-Amz-Signature=3979f3818dd0961bd97c81ef0bcac4d2fecb6688e475a92b076978daf8979727&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 7

Figure 8

Figure 9

Figure 10

Figure 11

Photo 1

Figure 12

Figure 13

Figure 14

Figure 15

Figure 16

Figure 17

Figure 18
![Comparison between the results obtained by the proposed model and those calculated by the law of Della and Feia [47].](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/64737a0a4e662f30ba53f8b8/j_sgem-2022-0025_fig_018.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250920%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250920T025236Z&X-Amz-Expires=3600&X-Amz-Signature=9986379f4ef8bf4a9bde76d9d05c250f0f7df3adbba262b56bc6238e076e6ea7&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Values of the parameters of the proposed model for the three types of sand_
α | 4.5 | 3.4 | 3 |
8.5 | 7.3 | 6 |
Characteristics of the materials to be analyzed_
Type 1 | 0.18 | 1.5 | 0.51 | 0.79 | 2.65 |
Type 2 | 0.37 | 2.85 | 0.47 | 0.75 | 2.65 |
Type 3 | 0.42 | 2.47 | 0.47 | 0.76 | 2.65 |
Type 4 | 0.5 | 5 | 0.44 | 0.77 | 2.65 |
Characteristics of the used sands_
NE34 | 206 | 1.5 | 0.557 | 0.884 | 2.65 |
0.9 | 0.7 | 0.5 |