An analytical model to predict water retention curves for granular materials using the grain-size distribution curve
, , et
10 déc. 2022
À propos de cet article
Catégorie d'article: Original Study
Publié en ligne: 10 déc. 2022
Pages: 354 - 369
Reçu: 01 janv. 2022
Accepté: 27 sept. 2022
DOI: https://doi.org/10.2478/sgem-2022-0025
Mots clés
© 2022 Linda Bouacida et al., published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 International License.
Figure 1
![Conceptual diagram showing the effect of (a) median particle size of uniform sand and (b) width of particle size distribution, on the shape of the soil-water characteristic curve (SWCC) of sand (Craig H. Benson et al. [14]).](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/64737a0a4e662f30ba53f8b8/j_sgem-2022-0025_fig_001.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250921%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250921T041319Z&X-Amz-Expires=3600&X-Amz-Signature=fee2d946ff52c05c0203839afa1fb6bdd806a63123d432d5a4cd12b10f62dbf8&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 2
![Conceptual diagram presenting the effect of (a) the median particle size of uniform sand, and (b) the breadth of particle size distribution, on the parameters α and n (Craig H. Benson et al. [12]).](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/64737a0a4e662f30ba53f8b8/j_sgem-2022-0025_fig_002.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250921%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250921T041319Z&X-Amz-Expires=3600&X-Amz-Signature=33369bee338df75ac6d3ad893f162a1fb90ba1cde4df1bea6225cbe35b0ea18c&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 3
![Typical soil water retention curve (Toll [59]).](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/64737a0a4e662f30ba53f8b8/j_sgem-2022-0025_fig_003.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250921%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250921T041319Z&X-Amz-Expires=3600&X-Amz-Signature=1732bdd973c6c6672c9fcdbeb014088485e9b012f52a132eac76f7f285a70c33&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 4
![Explanatory diagram of the drying and wetting processes in the porous network that is composed of cylinders with radius r; rm is the meniscus radius at the air-water interface (Do. [19]).](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/64737a0a4e662f30ba53f8b8/j_sgem-2022-0025_fig_004.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250921%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250921T041319Z&X-Amz-Expires=3600&X-Amz-Signature=5106522c1196edd599695850da898c619ec40b93ca6c1b39b312d90df2227ada&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 5
![Schematic representation of the tensiometric method for the measurement of suction (Feia et al. [25]).](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/64737a0a4e662f30ba53f8b8/j_sgem-2022-0025_fig_005.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250921%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250921T041319Z&X-Amz-Expires=3600&X-Amz-Signature=01722526a4e72ff9b3fd34723423ed269d9fc0cdf7b763d3175e9d55335cb913&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 6
![Experimental results used in this study (Feia et al. [25]).](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/64737a0a4e662f30ba53f8b8/j_sgem-2022-0025_fig_006.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250921%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250921T041319Z&X-Amz-Expires=3600&X-Amz-Signature=f2850f3803d8ca6205e3c11a08cb38244819ea3f84c5537fb6a2f6033bd967eb&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 7

Figure 8

Figure 9

Figure 10

Figure 11

Photo 1

Figure 12

Figure 13

Figure 14

Figure 15

Figure 16

Figure 17

Figure 18
![Comparison between the results obtained by the proposed model and those calculated by the law of Della and Feia [47].](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/64737a0a4e662f30ba53f8b8/j_sgem-2022-0025_fig_018.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250921%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250921T041319Z&X-Amz-Expires=3600&X-Amz-Signature=527efff452a6d2bc659d0d059422309875e3498703170ebe95b0edd272b69734&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Values of the parameters of the proposed model for the three types of sand_
α | 4.5 | 3.4 | 3 |
8.5 | 7.3 | 6 |
Characteristics of the materials to be analyzed_
Type 1 | 0.18 | 1.5 | 0.51 | 0.79 | 2.65 |
Type 2 | 0.37 | 2.85 | 0.47 | 0.75 | 2.65 |
Type 3 | 0.42 | 2.47 | 0.47 | 0.76 | 2.65 |
Type 4 | 0.5 | 5 | 0.44 | 0.77 | 2.65 |
Characteristics of the used sands_
NE34 | 206 | 1.5 | 0.557 | 0.884 | 2.65 |
0.9 | 0.7 | 0.5 |