Accesso libero

The effect of the pre-wetting of expanded clay aggregate on the freeze-thaw resistance of the expanded clay aggregate concrete

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Amran, Y. H. M., Farzadnia, N., Ali, A. A. A. (2015). Properties and applications of foamed concrete; a review. Construction and Building Materials, 101, 990–1005. https://doi.org/10.1016/j.conbuildmat.2015.10.112 AmranY. H. M. FarzadniaN. AliA. A. A. 2015 Properties and applications of foamed concrete; a review Construction and Building Materials 101 990 1005 https://doi.org/10.1016/j.conbuildmat.2015.10.112 10.1016/j.conbuildmat.2015.10.112 Search in Google Scholar

Buth, E.; Ledbetter, W.B. (1967). Research Report 81-3: Aggregate absorption factor as an indicator of the freeze-thaw durability of structural lightweight concrete. Texas: Texas Transportation Institute. ButhE. LedbetterW.B. 1967 Research Report 81-3: Aggregate absorption factor as an indicator of the freeze-thaw durability of structural lightweight concrete Texas Texas Transportation Institute Search in Google Scholar

Chandra, S., Aavik, J., & Berntsson, L. (1982). Influence of polymer microparticles on freeze-thaw resistance of structural lightweight aggregate concrete. International Journal of Cement Composites and Lightweight Concrete, 4(2), 111–115. https://doi.org/10.1016/0262-5075(82)90015-x ChandraS. AavikJ. BerntssonL. 1982 Influence of polymer microparticles on freeze-thaw resistance of structural lightweight aggregate concrete International Journal of Cement Composites and Lightweight Concrete 4 2 111 115 https://doi.org/10.1016/0262-5075(82)90015-x 10.1016/0262-5075(82)90015-X Search in Google Scholar

EN 1990 Eurocode: Basis of structural design. (2002). EN 1990 Eurocode: Basis of structural design 2002 Search in Google Scholar

Gao, X. F., Lo, Y. T., & Tam, C. M. (2002). Investigation of micro-cracks and microstructure of high performance lightweight aggregate concrete. Building and Environment, 37(5), 485–489. https://doi.org/10.1016/s0360-1323(01)00051-8 GaoX. F. LoY. T. TamC. M. 2002 Investigation of micro-cracks and microstructure of high performance lightweight aggregate concrete Building and Environment 37 5 485 489 https://doi.org/10.1016/s0360-1323(01)00051-8 10.1016/S0360-1323(01)00051-8 Search in Google Scholar

Haug, A. K., & Fjeld, S. (1996). A floating concrete platform hull made of lightweight aggregate concrete. Engineering Structures, 18(11), 831–836. https://doi.org/10.1016/0141-0296(95)00160-3 HaugA. K. FjeldS. 1996 A floating concrete platform hull made of lightweight aggregate concrete Engineering Structures 18 11 831 836 https://doi.org/10.1016/0141-0296(95)00160-3 10.1016/0141-0296(95)00160-3 Search in Google Scholar

Jo, B., Park, S., & Park, J. (2007). Properties of concrete made with alkali-activated fly ash lightweight aggregate (AFLA). Cement and Concrete Composites, 29(2), 128–135. https://doi.org/10.1016/j.cemconcomp.2006.09.004 JoB. ParkS. ParkJ. 2007 Properties of concrete made with alkali-activated fly ash lightweight aggregate (AFLA) Cement and Concrete Composites 29 2 128 135 https://doi.org/10.1016/j.cemconcomp.2006.09.004 10.1016/j.cemconcomp.2006.09.004 Search in Google Scholar

Jóźwiak-Niedźwiedzka, D. (2005). Scaling resistance of high performance concretes containing a small portion of pre-wetted lightweight fine aggregate. Cement and Concrete Composites, 27(6), 709–715. https://doi.org/10.1016/j.cemconcomp.2004.11.001 Jóźwiak-NiedźwiedzkaD. 2005 Scaling resistance of high performance concretes containing a small portion of pre-wetted lightweight fine aggregate Cement and Concrete Composites 27 6 709 715 https://doi.org/10.1016/j.cemconcomp.2004.11.001 10.1016/j.cemconcomp.2004.11.001 Search in Google Scholar

Kockal, N. U., & Ozturan, T. (2011). Durability of lightweight concretes with lightweight fly ash aggregates. Construction and Building Materials, 25(3), 1430–1438. https://doi.org/10.1016/j.conbuildmat.2010.09.022 KockalN. U. OzturanT. 2011 Durability of lightweight concretes with lightweight fly ash aggregates Construction and Building Materials 25 3 1430 1438 https://doi.org/10.1016/j.conbuildmat.2010.09.022 10.1016/j.conbuildmat.2010.09.022 Search in Google Scholar

Kucharczyková, B., Keršner, Z., Pospíchal, O., Misák, P., & Vymazal, T. (2010). Influence of freeze–thaw cycles on fracture parameters values of lightweight concrete. Procedia Engineering, 2(1), 959–966. https://doi.org/10.1016/j.proeng.2010.03.104 KucharczykováB. KeršnerZ. PospíchalO. MisákP. VymazalT. 2010 Influence of freeze–thaw cycles on fracture parameters values of lightweight concrete Procedia Engineering 2 1 959 966 https://doi.org/10.1016/j.proeng.2010.03.104 10.1016/j.proeng.2010.03.104 Search in Google Scholar

Kucharczyková, B., Keršner, Z., Pospíchal, O., Misák, P., Daněk, P., & Schmid, P. (2012). The porous aggregate pre-soaking in relation to the freeze–thaw resistance of lightweight aggregate concrete. Construction and Building Materials, 30, 761–766. https://doi.org/10.1016/j.conbuildmat.2011.12.067 KucharczykováB. KeršnerZ. PospíchalO. MisákP. DaněkP. SchmidP. 2012 The porous aggregate pre-soaking in relation to the freeze–thaw resistance of lightweight aggregate concrete Construction and Building Materials 30 761 766 https://doi.org/10.1016/j.conbuildmat.2011.12.067 10.1016/j.conbuildmat.2011.12.067 Search in Google Scholar

Malaiskiene, J., Skripkiunas, G., Vaiciene, M., & Karpova, E. (2017). The influence of aggregates type on W/C ratio on the strength and other properties of concrete. IOP Conference Series: Material Science and Engineering, 251, 1–6. https://iopscience.iop.org/article/10.1088/1757-899X/251/1/012025. MalaiskieneJ. SkripkiunasG. VaicieneM. KarpovaE. 2017 The influence of aggregates type on W/C ratio on the strength and other properties of concrete IOP Conference Series: Material Science and Engineering 251 1 6 https://iopscience.iop.org/article/10.1088/1757-899X/251/1/012025. 10.1088/1757-899X/251/1/012025 Search in Google Scholar

Mao, J., & Ayuta, K. (2008). Freeze–Thaw Resistance of Lightweight Concrete and Aggregate at Different Freezing Rates. Journal of Materials in Civil Engineering, 20(1), 78–84. https://doi.org/10.1061/(asce)0899-1561(2008)20:1(78) MaoJ. AyutaK. 2008 Freeze–Thaw Resistance of Lightweight Concrete and Aggregate at Different Freezing Rates Journal of Materials in Civil Engineering 20 1 78 84 https://doi.org/10.1061/(asce)0899-1561(2008)20:1(78) 10.1061/(ASCE)0899-1561(2008)20:1(78) Search in Google Scholar

Neville, A.M. (2011). Properties of concrete (5th ed.). Harlow: Pearson Education Ltd. NevilleA.M. 2011 Properties of concrete 5th ed. Harlow Pearson Education Ltd. Search in Google Scholar

Ozguven, A., & Gunduz, L. (2012). Examination of effective parameters for the production of expanded clay aggregate. Cement and Concrete Composites, 34(6), 781–787. https://doi.org/10.1016/j.cemconcomp.2012.02.007 OzguvenA. GunduzL. 2012 Examination of effective parameters for the production of expanded clay aggregate Cement and Concrete Composites 34 6 781 787 https://doi.org/10.1016/j.cemconcomp.2012.02.007 10.1016/j.cemconcomp.2012.02.007 Search in Google Scholar

PN-B-06265:2018-10. Concrete. Specification, performance, production and conformity. Domestic supplement of PN-EN 206+A1:2016-12. (in Polish) PN-B-06265 2018 -10. Concrete. Specification, performance, production and conformity Domestic supplement of PN-EN 206+A1:2016-12. (in Polish) Search in Google Scholar

Polat, R., Demirboğa, R., Karakoç, M. B., & Türkmen, İ. (2010). The influence of lightweight aggregate on the physico-mechanical properties of concrete exposed to freeze–thaw cycles. Cold Regions Science and Technology, 60(1), 51–56. https://doi.org/10.1016/j.coldregions.2009.08.010 PolatR. DemirboğaR. KarakoçM. B. Türkmenİ. 2010 The influence of lightweight aggregate on the physico-mechanical properties of concrete exposed to freeze–thaw cycles Cold Regions Science and Technology 60 1 51 56 https://doi.org/10.1016/j.coldregions.2009.08.010 10.1016/j.coldregions.2009.08.010 Search in Google Scholar

Pospíchal, O., Kucharczyková, B., Misák, P., & Vymazal, T. (2010). Freeze-thaw resistance of concrete with porous aggregate. Procedia Engineering, 2(1), 521–529. https://doi.org/10.1016/j.proeng.2010.03.056 PospíchalO. KucharczykováB. MisákP. VymazalT. 2010 Freeze-thaw resistance of concrete with porous aggregate Procedia Engineering 2 1 521 529 https://doi.org/10.1016/j.proeng.2010.03.056 10.1016/j.proeng.2010.03.056 Search in Google Scholar

Rashad, A. M. (2018). Lightweight expanded clay aggregate as a building material – An overview. Construction and Building Materials, 170, 757–775. https://doi.org/10.1016/j.conbuildmat.2018.03.009 RashadA. M. 2018 Lightweight expanded clay aggregate as a building material – An overview Construction and Building Materials 170 757 775 https://doi.org/10.1016/j.conbuildmat.2018.03.009 10.1016/j.conbuildmat.2018.03.009 Search in Google Scholar

Topçu, İ. B., & Işıkdağ, B. (2008). Effect of expanded perlite aggregate on the properties of lightweight concrete. Journal of Materials Processing Technology, 204(13), 34–38. https://doi.org/10.1016/j.jmatprotec.2007.10.052 Topçuİ. B. IşıkdağB. 2008 Effect of expanded perlite aggregate on the properties of lightweight concrete Journal of Materials Processing Technology 204 1–3 34 38 https://doi.org/10.1016/j.jmatprotec.2007.10.052 10.1016/j.jmatprotec.2007.10.052 Search in Google Scholar

Youm, K.-S., Moon, J., Cho, J.-Y., & Kim, J. J. (2016). Experimental study on strength and durability of lightweight aggregate concrete containing silica fume. Construction and Building Materials, 114, 517–527. https://doi.org/10.1016/j.conbuildmat.2016.03.165 YoumK.-S. MoonJ. ChoJ.-Y. KimJ. J. 2016 Experimental study on strength and durability of lightweight aggregate concrete containing silica fume Construction and Building Materials 114 517 527 https://doi.org/10.1016/j.conbuildmat.2016.03.165 10.1016/j.conbuildmat.2016.03.165 Search in Google Scholar

Amran, Y. H. M., Farzadnia, N., Ali, A. A. A. (2015). Properties and applications of foamed concrete; a review. Construction and Building Materials, 101, 990–1005. https://doi.org/10.1016/j.conbuildmat.2015.10.112 AmranY. H. M. FarzadniaN. AliA. A. A. 2015 Properties and applications of foamed concrete; a review Construction and Building Materials 101 990 1005 https://doi.org/10.1016/j.conbuildmat.2015.10.112 10.1016/j.conbuildmat.2015.10.112 Search in Google Scholar

eISSN:
2083-831X
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Geosciences, other, Materials Sciences, Composites, Porous Materials, Physics, Mechanics and Fluid Dynamics