Accesso libero

Methods for Extraction of Bioactive Compounds from Products: A Review

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Pagano I., Campone L., Celano R., Piccinelli A. L., Rastrelli L. Green non-conventional techniques for the extraction of polyphenols from agricultural food by-products: A review. J. Chromatogr. A 2021:1651:462295. https://doi.org/10.1016/j.chroma.2021.462295 Search in Google Scholar

Lapornik B., Prošek M., Wondra A. G. Comparison of extracts prepared from plant by-products using different solvents and extraction time. J. Food Eng. 2005:71(2):214–222. https://doi.org/10.1016/j.jfoodeng.2004.10.036 Search in Google Scholar

Wiboonsirikul J., Adachi S. Extraction of functional substances from agricultural products or by-products by subcritical water treatment. Food Sci. Technol. Res. 2008:14(4):319–328. https://doi.org/10.3136/fstr.14.319 Search in Google Scholar

Nn A. A Review on the Extraction Methods Use in Medicinal Plants, Principle, Strength and Limitation. Med. Aromat. Plants 2015:4(3):3–8. https://doi.org/10.4172/2167-0412.1000196 Search in Google Scholar

Raynie D. E. Modern Extraction Techniques, Copyright, Foreword. 2006. https://doi.org/10.1021/bk-2006-0926.fw001 Search in Google Scholar

Stéphane F. F. Y., Jules B. K. J., Batiha G. E.-S., Ali I., Bruno L. N. Extraction of Bioactive Compounds from Medicinal Plants and Herbs. Nat. Med. Plants 2021. https://doi.org/10.5772/intechopen.98602 Search in Google Scholar

Wilson J., Simpson T., Spelman K. Total cannabidiol (CBD) concentrations and yields from traditional extraction methods: Percolation vs. maceration. Front. Pharmacol. 2022:13:4438. https://doi.org/10.3389/fphar.2022.886993 Search in Google Scholar

Ma Y., et al. Reflux Extraction Optimization and Antioxidant Activity of Phenolic Compounds from Pleioblastus amarus (Keng) Shell. Molecules 2022:27(2). https://doi.org/10.3390/molecules27020362 Search in Google Scholar

Gong X., Zhang Y., Pan J., Qu H. Optimization of the Ethanol Recycling Reflux Extraction Process for Saponins Using a Design Space Approach. PLoS One 2014:9(12):e114300. https://doi.org/10.1371/journal.pone.0114300 Search in Google Scholar

Chua L., Lau C. Reflux Extraction and Column Chromatography for Rosmarinic Acid- Rich Fraction from Orthosiphon stamineus. Nat. Prod. J. 2017:7(1):30–36. https://doi.org/10.2174/2210315506666161007114834 Search in Google Scholar

Ramluckan K., Moodley K. G., Bux F. An evaluation of the efficacy of using selected solvents for the extraction of lipids from algal biomass by the soxhlet extraction method. Fuel 2014:116:103–108. https://doi.org/10.1016/j.fuel.2013.07.118 Search in Google Scholar

de Boer J. Polychlorinated biphenyls. In Worsfold P., Townshend A., Colin Poole C. (Eds.) Encyclopedia of Analytical Science. Elsevier, 2005:214–225. https://doi.org/10.1016/B0-12-369397-7/00472-6 Search in Google Scholar

Kumar S., Bhandari C., Sharma P., Agnihotri N. Role of Piperine in Chemoresistance. Role Nutraceuticals Chemoresistance to Cancer 2018:259–286. https://doi.org/10.1016/B978-0-12-812373-7.00013-9 Search in Google Scholar

Robards K., Ryan D. Chapter 10 - Sample handling in chromatography. Princ. Pract. Mod. Chromatogr. Methods 2022:453–493. https://doi.org/10.1016/B978-0-12-822096-2.00007-4 Search in Google Scholar

Carabias-Martínez R., Rodríguez-Gonzalo E., Revilla-Ruiz P., Hernández-Méndez J. Pressurized liquid extraction in the analysis of food and biological samples. J. Chromatogr. A 2005:1089:1–17. https://doi.org/10.1016/j.chroma.2005.06.072 Search in Google Scholar

Zbinden M. D. A., et al. Pulsed electric field (PEF) as an intensification pretreatment for greener solvent lipid extraction from microalgae. Biotechnol. Bioeng. 2013:110(6):1605–1615. https://doi.org/10.1002/bit.24829 Search in Google Scholar

Ranjha M. M. A. N., et al. A critical review on pulsed electric field: A novel technology for the extraction of phytoconstituents. Molecules 2021:26(16):1–23. https://doi.org/10.3390/molecules26164893 Search in Google Scholar

Leone A., Tamborrino A., Esposto S., Berardi A., Servili M. Investigation on the Effects of a Pulsed Electric Field (PEF) Continuous System Implemented in an Industrial Olive Oil Plant. Foods 2022:11(18). https://doi.org/10.3390/foods11182758 Search in Google Scholar

Poojary, M.M. et al. Application of Pulsed Electric Field Treatment for Food Waste Recovery Operations. In: Miklavčič, D. (eds) Handbook of Electroporation. Springer, Cham. 2017:2573–2590. https://doi.org/10.1007/978-3-319-32886-7_185 Search in Google Scholar

Pappas V. M., et al. Optimization of pulsed electric field as standalone ‘green’ extraction procedure for the recovery of high value-added compounds from fresh olive leaves. Antioxidants 2021:10(10):1554. https://doi.org/10.3390/antiox10101554 Search in Google Scholar

Abubakar A. R., Haque M. Preparation of Medicinal Plants: Basic Extraction and Fractionation Procedures for Experimental Purposes. J. Pharm. Bioallied Sci. 2020:12(1):1. https://doi.org/10.4103/jpbs.JPBS_175_19 Search in Google Scholar

Monton C., Luprasong C. Effect of temperature and duration time of maceration on nitrate content of Vernonia cinerea (L.) less.: Circumscribed central composite design and method validation. Int. J. Food Sci. 2019. https://doi.org/10.1155/2019/1281635 Search in Google Scholar

Uwineza P. A., Waśkiewicz A. Recent Advances in Supercritical Fluid Extraction of Natural Bioactive Compounds from Natural Plant Materials. Molecules 2020:25(17):3847. https://doi.org/10.3390/molecules25173847 Search in Google Scholar

Raventós M., Duarte S., Alarcón R. Application and Possibilities of Supercritical CO2 Extraction in Food Processing Industry: An Overview. Food Sci. Technol. Int. 2002:8(5):269–284. https://doi.org/10.1106/108201302029451 Search in Google Scholar

Sustainable extraction with carbon dioxide. [Online]. [Accessed: 29.09.2022]. Available: https://www.uraca.com/en/infocenter/know-how/co2-extraction/ Search in Google Scholar

Yang Y., Hu B. 21 - Bio-based chemicals from biorefining: Lipid and wax conversion and utilization. Adv. Biorefineries Biomass Waste Supply Chain Exploit. 2014:693–720. https://doi.org/10.1533/9780857097385.2.693 Search in Google Scholar

Marathe S. J., Jadhav S. B., Bankar S. B., Singhal R. S. Enzyme-Assisted Extraction of Bioactives. In: Puri, M. (eds) Food Bioactives. Springer, Cham. 2017:171–201. https://doi.org/10.1007/978-3-319-51639-4_8 Search in Google Scholar

Pawlak K., Lipiec E., Szpunar J. Enzyme Treatment of Biological Samples for Speciation. Compr. Sampl. Sample Prep. Anal. Tech. Sci. 2012:3:395–420. https://doi.org/10.1016/B978-0-12-381373-2.00090-9 Search in Google Scholar

Shinwari K. J. Emerging technologies for the recovery of bioactive compounds from saffron species. Saffron 2021:143–182. https://doi.org/10.1016/B978-0-12-821219-6.00004-X Search in Google Scholar

Naik A. S., Suryawanshi D., Kumar M., Waghmare R. Ultrasonic treatment: A cohort review on bioactive compounds, allergens and physico-chemical properties of food. Curr. Res. Food Sci. 2021:4:470. https://doi.org/10.1016/j.crfs.2021.07.003 Search in Google Scholar

Kumar K., Srivastav S., Sharanagat V. S. Ultrasound assisted extraction (UAE) of bioactive compounds from fruit and vegetable processing by-products: A review. Ultrason. Sonochem. 2021:70:105325. https://doi.org/10.1016/j.ultsonch.2020.105325 Search in Google Scholar

Chemat F., Rombaut N., Sicaire A. G., Meullemiestre A., Fabiano-Tixier A. S., Abert-Vian M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason. Sonochem. 2017:34:540–560. https://doi.org/10.1016/j.ultsonch.2016.06.035 Search in Google Scholar

Sun A., Chi X., Yang X., Feng J., Li Y., Zhou J. Applications and Prospects of Ultrasound-Assisted Extraction in Chinese Herbal Medicine. Journal of Biomedical Science 2019:1(1). https://doi.org/10.38125/OAJBS.000103 Search in Google Scholar

Gachanja A. N. Polycyclic Aromatic Hydrocarbons – Determination. Encycl. Anal. Sci. Second Ed. 2005:225–234. https://doi.org/10.1016/B0-12-369397-7/00473-8 Search in Google Scholar

Proestos C., Komaitis M. Application of microwave-assisted extraction to the fast extraction of plant phenolic compounds. LWT – Food Sci. Technol. 2008:41(4):652–659. https://doi.org/10.1016/j.lwt.2007.04.013 Search in Google Scholar

Ultrahigh pressure extraction of bioactive compounds from plants – A review. Critical Reviews in Food Science and Nutrition 2015:57(6):1097–1106. https://doi.org/10.1080/10408398.2013.874327 Search in Google Scholar

Ma Y., et al. Reflux Extraction Optimization and Antioxidant Activity of Phenolic Compounds from Pleioblastus amarus (Keng) Shell. Molecules 2022:27(2):362. https://doi.org/10.3390/molecules27020362 Search in Google Scholar

Cui H. Y., Niranjana Murthy H., Moh S. H., Cui Y. Y., Lee E. J., Paek K. Y. Comparison of conventional and ultrasound-assisted methods for extraction of nutraceutical compounds from Dendrobium candidum. 2014:12(4):355–359. https://doi.org/10.1080/19476337.2014.888482 Search in Google Scholar

Rasul M. G. Conventional Extraction Methods Use in Medicinal Plants, their Advantages and Disadvantages. Int. J. Basic Sci. Appl. Comput. 2018. Search in Google Scholar

Aslam M. S., Ahmad M. A. Mechanochemical-assisted extraction method on Medicinal plants: A Brief Review. [Online]. [Accessed: 29.09.2022]. Available: https://www.academia.edu/32088541/Mechanochemical_assisted_extraction_method_on_Medicinal_plants_A_Brief_Review Search in Google Scholar

Wu K., Ju T., Deng Y., Xi J. Mechanochemical assisted extraction: A novel, efficient, eco-friendly technology. Trends Food Sci. Technol. 2017:66:166–175. https://doi.org/10.1016/j.tifs.2017.06.011 Search in Google Scholar

Mechanochemical assisted extraction: A novel, efficient, eco-friendly technology. Trends in Food Science & Technology 2017:66:166–175. https://doi.org/10.1016/j.tifs.2017.06.011 Search in Google Scholar

Chan C. H., Yusoff R., Ngoh G. C., Kung F. W. L. Microwave-assisted extractions of active ingredients from plants. J. Chromatogr. A 2011:1218(37):6213–6225. https://doi.org/10.1016/j.chroma.2011.07.040 Search in Google Scholar

Kronholm J., Hartonen K., Riekkola M. L. Analytical extractions with water at elevated temperatures and pressures. TrAC Trends in Analytical Chemistry 2007:26(5):396–412. https://doi.org/10.1016/j.trac.2007.03.004 Search in Google Scholar

Teresa-Martínez G. D., Cardador-Martínez A., Téllez-Pérez C., Allaf K., Jiménez-Martínez C., Alonzo-Macías M. Effect of the Instant Controlled Pressure Drop Technology in Cardamom (Elettaria cardamomum) Essential Oil Extraction and Antioxidant Activity. Molecules 2022:27(11):3433. https://doi.org/10.3390/molecules27113433 Search in Google Scholar

Hamoud-Agha M. M., Allaf K. Instant Controlled Pressure Drop (DIC) Technology in Food Preservation: Fundamental and Industrial Applications. Food Preserv. Waste Exploit. 2019. https://doi.org/10.5772/intechopen.83439 Search in Google Scholar

Zhang Q. W., Lin L. G., Ye W. C. Techniques for extraction and isolation of natural products: A comprehensive review. Chinese Med. (United Kingdom) 2018:13(1):1–26. https://doi.org/10.1186/s13020-018-0177-x Search in Google Scholar

Wang W. Y., Bin Qu H., Gong X. C. Research progress on percolation extraction process of traditional Chinese medicines. Zhongguo Zhong Yao Za Zhi 2020:45(5):1039–1046. doi: 10.19540/J.CNKI.CJCMM.20191221.305 Search in Google Scholar

Chua L. S., Latiff N. A., Mohamad M. Reflux extraction and cleanup process by column chromatography for high yield of andrographolide enriched extract. J. Appl. Res. Med. Aromat. Plants 2016:3(2):64–70. https://doi.org/10.1016/j.jarmap.2016.01.004 Search in Google Scholar

What is the Difference Between Reflux and Soxhlet Extraction. Compare the Difference Between Similar Terms. [Online]. [Accessed: 11.11.2022]. Available: https://www.differencebetween.com/what-is-the-difference-between-reflux-and-soxhlet-extraction/ Search in Google Scholar

Kongkiatpaiboon S., Gritsanapan W. Optimized extraction for high yield of insecticidal didehydrostemofoline alkaloid in Stemona collinsiae root extracts. Ind. Crops Prod. 2013:41(1):371–374. https://doi.org/10.1016/j.indcrop.2012.04.047 Search in Google Scholar

Alvarez-Rivera G., Bueno M., Ballesteros-Vivas D., Mendiola J. A., Ibañez E. Pressurized liquid extraction. Liq. Extr. 2019:375–398. https://doi.org/10.1016/B978-0-12-816911-7.00013-X Search in Google Scholar

de la Guardia M., Armenta S. Chaper 5 - Greening Sample Treatments. Compr. Anal. Chem. 2011:57:87–120. https://doi.org/10.1016/B978-0-444-53709-6.00005-7 Search in Google Scholar

Zhang Q. W., Lin L. G., Ye W. C. Techniques for extraction and isolation of natural products: A comprehensive review. Chinese Med. (United Kingdom) 2018:13(1):1–26. https://doi.org/10.1186/s13020-018-0177-x Search in Google Scholar

Dobroslavić E., Repajić M., Dragović-Uzelac V., Garofulić I. E. Isolation of Laurus nobilis Leaf Polyphenols: A Review on Current Techniques and Future Perspectives. Foods 2022:11(2):235. https://doi.org/10.3390/foods11020235 Search in Google Scholar

Rostagno M. A., Villares A., Guillamón E., García-Lafuente A., Martínez J. A. Sample preparation for the analysis of isoflavones from soybeans and soy foods. J. Chromatogr. A 2009:1216(1):2–29. https://doi.org/10.1016/j.chroma.2008.11.035 Search in Google Scholar

Supercritical CO2 extracts – extraction of spices, herbs and flowers using food grade CO2. [Online]. [Accessed 26.10.2022]. Available: https://manekancor.com/supercritical-co2-extract Search in Google Scholar

Streimikyte P., Viskelis P., Viskelis J. Enzymes-Assisted Extraction of Plants for Sustainable and Functional Applications. Int. J. Mol. Sci. 2022:23(4):2359. https://doi.org/10.3390/ijms23042359 Search in Google Scholar

Zhang M., et al. Optimization of Enzyme-Assisted Extraction and Purification of Flavonoids from Pinus koraiensis Nut-Coated Film and Antioxidant Activity Evaluation. Molecules 2021:26(7):1950. https://doi.org/10.3390/molecules26071950 Search in Google Scholar

Kumar D., Kalita P. Reducing postharvest losses during storage of grain crops to strengthen food security in developing countries. Foods 2017:6(1):1–22. https://doi.org/10.3390/foods6010008 Search in Google Scholar

Streimikyte P., Viskelis P., Viskelis J. Enzymes-Assisted Extraction of Plants for Sustainable and Functional Applications. Int. J. Mol. Sci. 2022:23(4):2359. https://doi.org/10.3390/ijms23042359 Search in Google Scholar

Syahir A., Sulaiman S., Mel M., Othman M., Zubaidah Sulaiman S. An Overview: Analysis of ultrasonic-assisted extraction’s parameters and its process. IOP Conf. Ser. Mater. Sci. Eng. 2020:778(1):012165. https://doi.org/10.1088/1757-899X/778/1/012165 Search in Google Scholar

Ummat V., et al. Optimisation of Ultrasound Frequency, Extraction Time and Solvent for the Recovery of Polyphenols, Phlorotannins and Associated Antioxidant Activity from Brown Seaweeds. Mar. Drugs 2020:18(5). https://doi.org/10.3390/md18050250 Search in Google Scholar

Pradal D., Vauchel P., Decossin S., Dhulster P., Dimitrov K. Kinetics of ultrasound-assisted extraction of antioxidant polyphenols from food by-products: Extraction and energy consumption optimization. Ultrason. Sonochem. 2016:32:137–146. https://doi.org/10.1016/j.ultsonch.2016.03.001 Search in Google Scholar

Yusoff I. M., Mat Taher Z., Rahmat Z., Chua L. S. A review of ultrasound-assisted extraction for plant bioactive compounds: Phenolics, flavonoids, thymols, saponins and proteins. Food Res. Int. 2022:157:111268. https://doi.org/10.1016/j.foodres.2022.111268 Search in Google Scholar

Chaudhary N., et al. A review on instant controlled pressure drop technology – a strategic tool for extraction of bioactive compounds. Int. J. Food Sci. Technol. 2021. https://doi.org/10.1111/ijfs.15408 Search in Google Scholar

Olalere O. A., Abdurahman N. H., bin Yunus M. R.., Alara O. R. Multi-response optimization and neural network modeling for parameter precision in heat reflux extraction of spice oleoresins from two pepper cultivars (Piper nigrum). J. King Saud Univ. – Sci. 2019:31(4):789–797. https://doi.org/10.1016/j.jksus.2017.09.010 Search in Google Scholar

Sridhar A., Ponnuchamy M., Kumar P. S., Kapoor A., Vo D. V. N., Prabhakar S. Techniques and modeling of polyphenol extraction from food: a review. Environ. Chem. Lett. 2021:19(4):3409–3443. https://doi.org/10.1007/s10311-021-01217-8 Search in Google Scholar

Fan L., et al. Mechanochemical assisted extraction as a green approach in preparation of bioactive components extraction from natural products – A review. Trends Food Sci. Technol. 2022:129:98–110. https://doi.org/10.1016/j.tifs.2022.09.009 Search in Google Scholar

Aslam M. S., Ahmad M. S., Atanassova M. S., Ahmad M. A. Mechanochemical-assisted extraction method on Medicinal plants: A Brief Review. Adv. Environ. Biol. 2017:11(2):84–91. Search in Google Scholar

Wu K., Ju T., Deng Y., Xi J. Mechanochemical assisted extraction: A novel, efficient, eco-friendly technology. Trends Food Sci. Technol. 2017:66:166–175. https://doi.org/10.1016/j.tifs.2017.06.011 Search in Google Scholar

Llompart M., Garcia-Jares C., Celeiro M., Dagnac T. Microwave-Assisted Extraction. In Worsfold P., Poole C., Townshend A., Miró M. (Eds.) Encyclopedia of Analytical Science (Third Edition). https://doi.org/10.1016/B978-0-12-409547-2.14442-7 Search in Google Scholar

Sparr Eskilsson C., Björklund E. Analytical-scale microwave-assisted extraction. J. Chromatogr. A 2000:902(1):227–250. https://doi.org/10.1016/S0021-9673(00)00921-3 Search in Google Scholar

Pech-Almeida J. L., et al. An Overview on Food Applications of the Instant Renard C. M. G. C. Elsevier Editorial System(tm) for LWT-Food Science and Technology Manuscript Draft Title: Extraction of bioactives from Fruit and Vegetables: State of the Art and Perspectives. Search in Google Scholar

Téllez-Pérez C., et al. Instant Controlled Pressure-Drop DIC as a Strategic Technology for Different Types of Natural Functional Foods. Funct. Foods 2019. Search in Google Scholar

Aslam M. S., Ahmad M. S., Atanassova M. S., Ahmad M. A. Mechanochemical-assisted extraction method on Medicinal plants: A Brief Review. Adv. Environ. Biol. 2017:11(2):84–91. Search in Google Scholar

eISSN:
2255-8837
Lingua:
Inglese
Frequenza di pubblicazione:
2 volte all'anno
Argomenti della rivista:
Life Sciences, other