1. bookVolume 30 (2022): Edizione 2 (April 2022)
Dettagli della rivista
License
Formato
Rivista
eISSN
2284-5623
Prima pubblicazione
08 Aug 2013
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese
access type Accesso libero

Crinum latifolium extract inhibits lipopolysaccharide-induced inflammation in human macrophages

Pubblicato online: 09 May 2022
Volume & Edizione: Volume 30 (2022) - Edizione 2 (April 2022)
Pagine: 183 - 190
Ricevuto: 20 Nov 2021
Accettato: 21 Mar 2022
Dettagli della rivista
License
Formato
Rivista
eISSN
2284-5623
Prima pubblicazione
08 Aug 2013
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese
Abstract

Introduction: Crinum latifolium is a natural plant showing the anti-inflammatory effects. We aimed to evaluate the effects of Crinum latifolium extract on proinflammatory cytokine production and maturation of early and late endosomes in the lipopolysaccharide (LPS)-induced human macrophages at light microscopic and biochemical levels.

Material and Methods: The effects of Crinum latifolium extract in human macrophages stimulated with LPS was evaluated to optic densities of the lysosome-associated membrane protein-1 (LAMP-1) and early endo-some antigen 1 (EEA1) by immunohistochemistry staining and to level of the proinflammatory cytokine interleukin (IL)-6 by enzyme-linked immunosorbent assay (ELISA).

Results: Crinum latifolium group exhibited a significant decreased in the levels of IL-6 in the supernatant as compared to the LPS group for 2 and 72 hours (p<0.0001). Crinum latifolium group exhibited a significant increased in the optic density of the EEA1 and LAMP-1 in coverslips as compared to the control and lipopolysaccharide groups after 2 and 72 hours (p<0.0001).

Conclusions: Crinum latifolium may a therapeutic plant in the inflammatory diseases, such as sepsis, through anti-inflammatory effects, such as decrease in production of the proinflammatory cytokine and increase in maturations of the early and late endosomes in macrophages.

Keywords

1. Jenny M, Wondrak A, Zvetkova E, Tram NT, Phi PT, Schennach H, et al. Crinum latifolium leave extracts suppress immune activation cascades in peripheral blood mononuclear cells and proliferation of prostate tumor cells. Sci Pharm. 2011;79(2):323-35. DOI: 10.3797/scipharm.1011-1310.3797/scipharm.1011-13 Search in Google Scholar

2. Fennell CW, van Staden J. Crinum species in traditional and modern medicine. J Ethnopharmacol. 2001;78(1):15-26. DOI: 10.1016/S0378-8741(01)00305-110.1016/S0378-8741(01)00305-1 Search in Google Scholar

3. Adesanya SA, Olugbade TA, Odebiyl OO, Aladesanmi JA. Antibacterial Alkaloids in Crinum jagus. Int J Pharmacognosy. 1992;30(4):303-7. DOI: 10.3109/1388020920905401910.3109/13880209209054019 Search in Google Scholar

4. Chen MX, Huo JM, Hu J, Xu ZP, Zhang X. Amaryllidaceae alkaloids from Crinum latifolium with cytotoxic, antimicrobial, antioxidant, and anti-inflammatory activities. Fitoterapia. 2018;130:48-53. DOI: 10.1016/j. fitote.2018.08.003 Search in Google Scholar

5. Furman D, Campisi J, Verdin E, Carrera-Bastos P, Targ S, Franceschi C, et al. Chronic inflammation in the etiology of disease across the life span. Nat Med. 2019;25(12):1822-32. DOI: 10.1038/s41591-019-0675-010.1038/s41591-019-0675-0714797231806905 Search in Google Scholar

6. Lopez-Candales A, Hernández Burgos PM, Hernandez-Suarez DF, Harris D. Linking Chronic Inflammation with Cardiovascular Disease: From Normal Aging to the Metabolic Syndrome. J Nat Sci. 2017;3(4):e341. Search in Google Scholar

7. Dregan A, Charlton J, Chowienczyk P, Gulliford MC. Chronic inflammatory disorders and risk of type 2 diabetes mellitus, coronary heart disease, and stroke: a population-based cohort study. Circulation. 2014;130(10):837-44. DOI: 10.1161/CIRCULATION-AHA.114.009990 Search in Google Scholar

8. Del Grossi Moura M, Cruz Lopes L, Silva MT, Barberato-Filho S, Motta RHL, Bergamaschi CdC. Use of steroid and nonsteroidal anti-inflammatories in the treatment of rheumatoid arthritis: Systematic review protocol. Medicine (Baltimore). 2018;97(41):e12658-e. DOI: 10.1097/MD.000000000001265810.1097/MD.0000000000012658620347430313057 Search in Google Scholar

9. Mpofu S, Mpofu CMA, Hutchinson D, Maier AE, Dodd SR, Moots RJ. Steroids, non-steroidal anti-inflammatory drugs, and sigmoid diverticular abscess perforation in rheumatic conditions. Annals Rheum Dis. 2004;63(5):588. DOI: 10.1136/ard.2003.01035510.1136/ard.2003.010355175500315082493 Search in Google Scholar

10. Suissa S, Ernst P. Inhaled corticosteroids: impact on asthma morbidity and mortality. J Allergy Clin Immunol. 2001;107(6):937-44. DOI: 10.1067/mai.2001.11565310.1067/mai.2001.11565311398069 Search in Google Scholar

11. Wongrakpanich S, Wongrakpanich A, Melhado K, Rangaswami J. A Comprehensive Review of Non-Steroidal Anti-Inflammatory Drug Use in The Elderly. Aging Dis. 2018;9(1):143-50. DOI: 10.14336/AD.2017.030610.14336/AD.2017.0306577285229392089 Search in Google Scholar

12. Lam JH, Smith FL, Baumgarth N. B Cell Activation and Response Regulation During Viral Infections. Viral immunology. 2020;33(4):294-306. DOI: 10.1089/vim.2019.020710.1089/vim.2019.0207724703232326852 Search in Google Scholar

13. Naik S, Larsen SB, Cowley CJ, Fuchs E. Two to Tango: Dialog between Immunity and Stem Cells in Health and Disease. Cell. 2018;175(4):908-20. DOI: 10.1016/j. cell.2018.08.071 Search in Google Scholar

14. An Y, Ni Y, Xu Z, Shi S, He J, Liu Y, et al. TRIM59 expression is regulated by Sp1 and Nrf1 in LPS-activated macrophages through JNK signaling pathway. Cellular signalling. 2020;67:109522. DOI: 10.1016/j. cellsig.2019.109522 Search in Google Scholar

15. Lu B, Nakamura T, Inouye K, Li J, Tang Y, Lundback P, et al. Novel role of PKR in inflammasome activation and HMGB1 release. Nature. 2012;488(7413):670-4. DOI: 10.1038/nature1129010.1038/nature11290416391822801494 Search in Google Scholar

16. Abarca-Vargas R, Petricevich VL. Extract from Bougainvillea xbuttiana (Variety Orange) Inhibits Production of LPS-Induced Inflammatory Mediators in Macrophages and Exerts a Protective Effect In Vivo. BioMed Res Int. 2019;2019:2034247. DOI: 10.1155/2019/203424710.1155/2019/2034247642535730949497 Search in Google Scholar

17. Parisi L, Gini E, Baci D, Tremolati M, Fanuli M, Bassani B, et al. Macrophage Polarization in Chronic Inflammatory Diseases: Killers or Builders? J Immunol Res. 2018;2018:8917804. DOI: 10.1155/2018/891780410.1155/2018/8917804582199529507865 Search in Google Scholar

18. Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol. 2011;11(11):723-37. DOI: 10.1038/nri307310.1038/nri3073342254921997792 Search in Google Scholar

19. Labonte AC, Tosello-Trampont AC, Hahn YS. The role of macrophage polarization in infectious and inflammatory diseases. Molecules and cells. 2014;37(4):275-85. DOI: 10.14348/molcells.2014.237410.14348/molcells.2014.2374401207524625576 Search in Google Scholar

20. Park H-S, Back YW, Shin K-W, Bae HS, Lee K-I, Choi H-G, et al. Mycobacterium tuberculosis Rv3463 induces mycobactericidal activity in macrophages by enhancing phagolysosomal fusion and exhibits therapeutic potential. Sci Rep. 2019;9(1):4246. DOI: 10.1038/s41598-019-38982-010.1038/s41598-019-38982-0641472230862819 Search in Google Scholar

21. Uribe-Querol E, Rosales C. Control of Phagocytosis by Microbial Pathogens. Front Immunol. 2017;8:1368. DOI: 10.3389/fimmu.2017.0136810.3389/fimmu.2017.01368566070929114249 Search in Google Scholar

22. Fairn GD, Grinstein S. How nascent phagosomes mature to become phagolysosomes. Trends Immunol. 2012;33(8):397-405. DOI: 10.1016/j.it.2012.03.00310.1016/j.it.2012.03.00322560866 Search in Google Scholar

23. Lou J, Li X, Huang W, Liang J, Zheng M, Xu T, et al. SNX10 promotes phagosome maturation in macrophages and protects mice against Listeria monocytogenes infection. Oncotarget. 2017;8(33):53935-47. DOI: 10.18632/oncotarget.1964410.18632/oncotarget.19644558955228903313 Search in Google Scholar

24. Nguyen HY, Vo BH, Nguyen LT, Bernad J, Alaeddine M, Coste A, et al. Extracts of Crinum latifolium inhibit the cell viability of mouse lymphoma cell line EL4 and induce activation of anti-tumour activity of macrophages in vitro. J Ethnopharmacol. 2013;149(1):75-83. DOI: 10.1016/j.jep.2013.06.00210.1016/j.jep.2013.06.00223769983 Search in Google Scholar

25. Chacinska A, Lind M, Frazier AE, Dudek J, Meisinger C, Geissler A, et al. Mitochondrial presequence translocase: switching between TOM tethering and motor recruitment involves Tim21 and Tim17. Cell. 2005;120(6):817-29. DOI: 10.1016/j.cell.2005.01.01110.1016/j.cell.2005.01.01115797382 Search in Google Scholar

26. Labzin LI, Bottermann M, Rodriguez-Silvestre P, Foss S, Andersen JT, Vaysburd M, et al. Antibody and DNA sensing pathways converge to activate the inflammasome during primary human macrophage infection. EMBO J. 2019;38(21):e101365. DOI: 10.15252/embj.201810136510.15252/embj.2018101365682620931468569 Search in Google Scholar

27. Kumar D, Arya V, Kaur R, Bhat ZA, Gupta VK, Kumar V. A review of immunomodulators in the Indian traditional health care system. J Microbiol Immunol Infect. 2012;45(3):165-84. DOI: 10.1016/j.jmii.2011.09.03010.1016/j.jmii.2011.09.03022154993 Search in Google Scholar

28. Fraser J, Simpson J, Fontana R, Kishi-Itakura C, Ktistakis NT, Gammoh N. Targeting of early endosomes by autophagy facilitates EGFR recycling and signalling. EMBO reports. 2019;20(10):e47734. DOI: 10.15252/embr.20194773410.15252/embr.201947734677689831448519 Search in Google Scholar

29. Shi M, Chen B, Mahajan D, Boh BK, Zhou Y, Dutta B, et al. Amino acids stimulate the endosome-to-Golgi trafficking through Ragulator and small GTPase Arl5. Nature communications. 2018;9(1):4987. DOI: 10.1038/s41467-018-07444-y10.1038/s41467-018-07444-y625576130478271 Search in Google Scholar

30. Koul A, Herget T, Klebl B, Ullrich A. Interplay between mycobacteria and host signalling pathways. Nature Rev Microbiol. 2004;2(3):189-202. DOI: 10.1038/nrmicro84010.1038/nrmicro84015083155 Search in Google Scholar

31. Kelly C, Canning P, Buchanan PJ, Williams MT, Brown V, Gruenert DC, et al. Toll-like receptor 4 is not targeted to the lysosome in cystic fibrosis airway epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2013;304(5):L371-82. DOI: 10.1152/ajplung.00372.201110.1152/ajplung.00372.2011407393923316065 Search in Google Scholar

32. Voltan AR, Sardi Jde C, Soares CP, Pelajo Mach-ado M, Fusco Almeida AM, Mendes-Giannini MJ. Early Endosome Antigen 1 (EEA1) decreases in macrophages infected with Paracoccidioides brasiliensis. Med Mycol. 2013;51(7):759-64. DOI: 10.3109/13693786.2013.77785910.3109/13693786.2013.77785923566224 Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo