Accesso libero

Effects of lactoferrin on osteogenic differentiation and related gene expressions of osteoblast precursor cells MC3T3-E1 under mechanical strain

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. White N, Evans M, Dover MS, Noons P, Solanki G, Nishikawa H. Posterior calvarial vault expansion using distraction osteogenesis. Childs Nerv Syst. 2009;25(2):231-6. DOI: 10.1007/s00381-008-0758-610.1007/s00381-008-0758-619057909Search in Google Scholar

2. Baker EN, Baker HM. A structural framework for understanding the multifunctional character of lactoferrin. Biochimie. 2009;91(1):3-10. DOI: 10.1016/j.biochi.2008.05.00610.1016/j.biochi.2008.05.00618541155Search in Google Scholar

3. Xiao G, Jiang D, Gopalakrishnan R, Franceschi RT. Fibroblast growth factor 2 induction of the osteocalcin gene requires MAPK activity and phosphorylation of the osteoblast transcription factor, Cbfa1/Runx2. J Biol Chem. 2002;277(39):36181-7. DOI: 10.1074/jbc. M20605720010.1074/jbcSearch in Google Scholar

4. Franceschi RT, Xiao G. Regulation of the osteo-blast-specific transcription factor, Runx2: responsiveness to multiple signal transduction pathways. J Cell Biochem. 2003;88(3):446-54. DOI: 10.1002/jcb.1036910.1002/jcb.1036912532321Search in Google Scholar

5. Nakajima K, Kanno Y, Nakamura M, Gao XD, Kawamura A, Itoh F, et al. Bovine milk lactoferrin induces synthesis of the angiogenic factors VEGF and FGF2 in osteoblasts via the p44/p42 MAP kinase pathway. Biometals. 2011;24(5):847-56. DOI: 10.1007/s10534-011-9439-010.1007/s10534-011-9439-021404021Search in Google Scholar

6. Chang L, Karin M. Mammalian MAP kinase signalling cascades. Nature. 2001;410(6824):37-40. DOI: 10.1038/3506500010.1038/3506500011242034Search in Google Scholar

7. Veeriah V, Paone R, Chatterjee S, Teti A, Capulli M. Osteoblasts Regulate Angiogenesis in Response to Mechanical Unloading. Calcif Tissue Int. 2019;104(3):344-54. DOI: 10.1007/s00223-018-0496-z10.1007/s00223-018-0496-z30465120Search in Google Scholar

8. Ikegame M, Ejiri S, Okamura H. Expression of Non-collagenous Bone Matrix Proteins in Osteoblasts Stimulated by Mechanical Stretching in the Cranial Suture of Neonatal Mice. J Histochem Cytochem. 2019;67(2):107-16. DOI: 10.1369/002215541879358810.1369/0022155418793588635431530113872Search in Google Scholar

9. Kong YY, Du M, Liu M, Zhang LW. Research progress in physio-chemical characteristics and osteogenic activity of lactoferrin. Food Sci. 2012;33:318-22.Search in Google Scholar

10. Jones TJ, Adapala RK, Geldenhuys WJ, Bursley C, AbouAlaiwi WA, Nauli SM, et al. Primary cilia regulates the directional migration and barrier integrity of endothelial cells through the modulation of hsp27 dependent actin cytoskeletal organization. J Cell Physiol. 2012;227(1):70-6. DOI: 10.1002/jcp.2270410.1002/jcp.22704320202121837772Search in Google Scholar

11. Singh A, Ahmad N, Varadarajan A, Vikram N, Singh TP, Sharma S, et al. Lactoferrin, a potential iron-chelator as an adjunct treatment for mucormycosis-A comprehensive review. Int J Biol Macromol. 2021;187:988-98. DOI: 10.1016/j.ijbiomac.2021.07.15610.1016/j.ijbiomac.2021.07.15634324905Search in Google Scholar

12. Burcel MG, Constantin M, Ionita G, Dascalescu D, Ionescu C, Stanila D, et al. Levels of lactoferrin, lysozyme and albumin in the tear film of keratoconus patients and their correlations with important parameters of the disease. Rev Romana Med Lab. 2020;28(2):153-61. DOI: 10.2478/rrlm-2020-001810.2478/rrlm-2020-0018Search in Google Scholar

13. Naot D, Grey A, Reid IR, Cornish J. Lactoferrin-a novel bone growth factor. Clin Med Res. 2005;3(2):93-101. DOI: 10.3121/cmr.3.2.9310.3121/cmr.3.2.93118343916012127Search in Google Scholar

14. Takayama Y, Takezawa T. Lactoferrin promotes collagen gel contractile activity of fibroblasts mediated by lipoprotein receptors. Biochem Cell Biol. 2006;84(3):268-74. DOI: 10.1139/o06-04110.1139/o06-04116936796Search in Google Scholar

15. Cornish J. Lactoferrin promotes bone growth. Bio-metals. 2004;17(3):331-5. DOI: 10.1023/B:BIOM.0000027713.18694.9110.1023/B:BIOM.0000027713.18694.91Search in Google Scholar

16. Abourehab MA. Hyaluronic acid modified risedro-nate and teriparatide co-loaded nanocarriers for improved osteogenic differentiation of osteoblasts for the treatment of osteoporosis. Curr Pharm Design. 2019;25(27):2975-88. DOI: 10.2174/13816128256661 90801140703Search in Google Scholar

17. Mitsui N, Suzuki N, Maeno M, Mayahara K, Yanagisawa M, Otsuka K, et al. Optimal compressive force induces bone formation via increasing bone sialoprotein and prostaglandin E(2) production appropriately. Life Sci. 2005;77(25):3168-82. DOI: 10.1016/j. lfs.2005.03.037Search in Google Scholar

18. Li K, Zhuang P, Tao B, Li D, Xing X, Mei X. Ultra-Small Lysozyme-Protected Gold Nanoclusters as Nanomedicines Inducing Osteogenic Differentiation. Int J Nanomed. 2020;15:4705-16. DOI: 10.2147/IJN. S24116310.2147/IJNSearch in Google Scholar

19. Santamaria-Jr M, Bagne L, Zaniboni E, Santamaria MP, Jardini MAN, Felonato M, et al. Diabetes mellitus and periodontitis: Inflammatory response in orthodontic tooth movement. Orthod Craniofac Res. 2020;23(1):27-34. DOI: 10.1111/ocr.1234010.1111/ocr.1234031461798Search in Google Scholar

20. Tang H, He Y, Li L, Mao W, Chen X, Ni H, et al. Exosomal MMP2 derived from mature osteoblasts promotes angiogenesis of endothelial cells via VEGF/Erk1/2 signaling pathway. Exp Cell Res. 2019;383(2):111541. DOI: 10.1016/j.yexcr.2019.11154110.1016/j.yexcr.2019.11154131369752Search in Google Scholar

21. Brandl N, Zemann A, Kaupe I, Marlovits S, Huettinger P, Goldenberg H, et al. Signal transduction and metabolism in chondrocytes is modulated by lactoferrin. Osteoarthritis Cartilage. 2010;18(1):117-25. DOI: 10.1016/j.joca.2009.08.01210.1016/j.joca.2009.08.01219747587Search in Google Scholar

eISSN:
2284-5623
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Life Sciences, Molecular Biology, Biochemistry, Human Biology, Microbiology and Virology