1. bookVolume 57 (2019): Edizione 3 (September 2019)
Dettagli della rivista
License
Formato
Rivista
eISSN
2501-062X
Prima pubblicazione
30 Mar 2015
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese
Accesso libero

Liraglutide exerts an anti-inflammatory action in obese patients with type 2 diabetes

Pubblicato online: 09 Sep 2019
Volume & Edizione: Volume 57 (2019) - Edizione 3 (September 2019)
Pagine: 233 - 240
Ricevuto: 26 Sep 2018
Dettagli della rivista
License
Formato
Rivista
eISSN
2501-062X
Prima pubblicazione
30 Mar 2015
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese

1. DIAZ-SOTO G., de LUIS DA., CONDE-VICENTE R., IZAOLA-JAUREGUI O., RAMOS C., ROMERO E. Beneficial effects of liraglutide on adipocytokines, insulin sensitivity parameters and cardiovascular risk biomarkers in patients with type 2 diabetes: a prospective study. Diabetes Res Clin Pract 2014;104 (1):92-96.10.1016/j.diabres.2014.01.01924530118Search in Google Scholar

2. CHAUDHURI A., GHANIM H., VORA M., SIACL., KORZENIEWSKI K., DHINDSA S., et al. Exenatide exerts a potent anti-inflammatory effect. J Clin Endocrinol Metab 2011; 97 (1):198-207.10.1210/jc.2011-1508325193622013105Search in Google Scholar

3. MAKDISSI A., GHANIM H., VORA M., GREEN K., ABUAYSHEH S., CHAUDHURI A., et al. Sitagliptin exerts an anti-inflammatory action. J Clin Endocrinol Metab 2012; 97 (9):3333-41.10.1210/jc.2012-1544343158022745245Search in Google Scholar

4. QIAO H., REN H., ZHANG M., XIONG X., LV R. Liraglutide repairs the infarcted heart: The role of the SIRT1 (Parkin) mitophagy pathway. Mol Med Rep. 2018; 17 (3):3722-34.10.3892/mmr.2018.8371580217729328405Search in Google Scholar

5. WANG C., LI L., LIU S., LIAO G., LI L., CHEN Y., et al. GLP-1 receptor agonist ameliorates obesity-induced chronic kidney injury via restoring renal metabolism homeostasis. PLoS One. 2018;13(3):e0193473.10.1371/journal.pone.0193473587398729590132Search in Google Scholar

6. CHEN A., CHEN Z., XIA Y., LU D., YANG X., Sun A., et al. Liraglutide attenuates NLRP3 inflammasome-dependent pyroptosis via regulating SIRT1/NOX4/ROS pathway in H9c2 cells. Biochem Biophys Res Commun. 2018;499(2):267-72.10.1016/j.bbrc.2018.03.14229571736Search in Google Scholar

7. INOUE T., INOGUCHI T., SONODA N., HENDARTO H., MAKIMURA H., SASAKI S., et al. GLP-1 analog liraglutide protects against cardiac steatosis, oxidative stress and apoptosis in streptozotocin-induced diabetic rats. Atherosclerosis 2015; 240(1):250-9.10.1016/j.atherosclerosis.2015.03.02625818251Search in Google Scholar

8. AGRAWAL R., ZHUANG Y., CUMMINGS BP., STANHOPE KL., GRAHAM JL., HAVEL PJ., GOMEZ-PINILLA F. Deterioration of plasticity and metabolic homeostasis in the brain of the UCD-T2 DM rat model of naturally occurring type-2 diabetes. Biochem Biophys Acta. 2014;1842(9):1313-23.Search in Google Scholar

9. STRYCHARS J., RUGIELSKA Z., SWIDERSKA E., DRZEWOSKI J., SZEMRAJ J., SZMIGIERO L., SLIWINSKA A. SIRT1 as a therapeutic target in diabetic complications. Curr Med Chem. 2018; 25(9):1002-35.10.2174/092986732466617110710311429110598Search in Google Scholar

10. KAIDASHEV IP. Conception for permanent activation of nuclear factor kbeta as molecular basis for metabolic syndrome pathogenesis. Patol Fiziol Eksp Ter 2013; 3:65-72.Search in Google Scholar

11. SHOELSON SE., LEE J., Yuan M. Inflammation and the IKK beta/I kappa B/NF-kappa B axis in obesity and diet-induced insulin resistance. Int J Obes Relat Metab Disord 2003; 27(Suppl 3):S49-52.10.1038/sj.ijo.080250114704745Search in Google Scholar

12. DEFRONZO RA., RATNER RE., HAN J., KIM DD., FINEMAN MS., BARON AD. Effects of exenatide (exendin-4) on glycemic control and weight over 30 weeks in metformin-treated patients with type 2 diabetes. Diabetes care 2005; 28(5):1092-1100.10.2337/diacare.28.5.109215855572Search in Google Scholar

13. ROSENSTOCK J., BRAZG R., ANDRYUK PJ., LU K., STEIN P. Efficacy and safety of the dipeptidyl peptidase-4 inhibitor sitagliptin added to ongoing pioglitazone therapy in patients with type 2 diabetes: a 24-week, multicenter, randomized, double-blind, placebo-controlled, parallel-group study. Clin Ther 2006; 28 (10):1556-68.10.1016/j.clinthera.2006.10.00717157112Search in Google Scholar

14. NAUCK M., FRID A., HERMANSEN K., SHAH NS., TANKOVA T., MITHA IH., et al. Efficacy and safety comparison of liraglutide, glimepiride, and placebo, all in combination with metformin, in type 2 diabetes. Diabetes care 2009; 32 (1):84-90.10.2337/dc08-1355260683618931095Search in Google Scholar

15. CERIELLO A., NOVIALS A., ORTEGA E., CANIVELL S., LASALA L., PUJADAS G., et al. Glucagon-like peptide 1 reduces endothelial dysfunction, inflammation, and oxidative stress induced by both hyperglycemia and hypoglycemia in type 1 diabetes. Diabetes Care 2013; 36 (8):2346-2350.10.2337/dc12-2469371450923564922Search in Google Scholar

16. ZHU T., WU XL., ZHANG W., XIAO M. Glucagon like peptide-1 (GLP-1) modulates OVA-induced airway inflammation and mucus secretion involving a protein kinase A (PKA)-dependent nuclear factor-κB (NF-κB) signaling pathway in mice. Int J Mol Sci 2015; 16 (9):20195-20211.10.3390/ijms160920195461319726343632Search in Google Scholar

17. HATTORI Y., JOJIMA T., TOMIZAWA A., SATOH H., HATTORI S., KASAI K., et al. A glucagon-like peptide-1 (GLP-1) analogue, liraglutide, upregulates nitric oxide production and exerts anti-inflammatory action in endothelial cells. Diabetologia 2010; 53 (10):2256.10.1007/s00125-010-1831-820593161Search in Google Scholar

18. KRASNER NM., IDO Y., RUDERMAN NB., CACICEDO JM. Glucagon-like peptide-1 (GLP-1) analog liraglutide inhibits endothelial cell inflammation through a calcium and AMPK dependent mechanism. PLoS ONE 2014; 9 (5):e97554.10.1371/journal.pone.0097554402398424835252Search in Google Scholar

19. SHOELSON SE., HERRERO L., NAAZ A. Obesity, inflammation, and insulin resistance. Gastroenterology 2007; 132 (6):2169-80.10.1053/j.gastro.2007.03.05917498510Search in Google Scholar

20. BALESTRIERI ML., RIZZO MR., BARBIERI M., PAOLISSO P., D’ONOFRIO N., GIOVANE A., et al. Sirtuin 6 expression and inflammatory activity in diabetic atherosclerotic plaques: effects of incretin treatment. Diabetes 2015; 64 (4):1395-406.10.2337/db14-114925325735Search in Google Scholar

21. ISHIKAWA S., TAKEMITSU H., HABARA M., MORI N., YAMAMOTO I., ARAI T. Sirtuin 1 suppresses nuclear factor κB induced transactivation and pro-inflammatory cytokine expression in cat fibroblast cells. J Vet Med Sci 2016; 77 (12):1681-4.10.1292/jvms.15-0245471073026165138Search in Google Scholar

22. LEE JH., SONG MY., SONG EK., KIM EK., MOON WS., HAN MK., et al. Overexpression of SIRT1 protects pancreatic beta-cells against cytokine toxicity by suppressing the nuclear factor-kappa B signaling pathway. Diabetes 2009; 58 (2):344-351.10.2337/db07-1795262860719008341Search in Google Scholar

23. ZHANG XIU-LAI, MIN-LI CHEN, SHENG-LI ZHOU. Fentanyl increases colorectal carcinoma cell apoptosis by inhibition of NF-kB in a Sirt1-dependent manner. Asia Pacific Journal of Cancer prevention 2014;15(22):10015-20.10.7314/APJCP.2014.15.22.10015Search in Google Scholar

24. LV L., SHEN Z., ZHANG J., ZHANG H., DONG J., YAN Y., et al. Clinicopathological significance of SIRT1 expression in colorectal adenocarcinoma. Med Oncol 2014; 31(6):965.10.1007/s12032-014-0965-924816737Search in Google Scholar

25. TONG W., Lu L., QIU M., XIE Q., CHEN Y., SHEN W., et al. Liraglutide ameliorates non-alcoholic fatty liver disease by enhancing mitochondrial architecture and promoting autophagy through the SIRT1/SIRT3-FOXO3a pathway. Hepatol Res. 2016; 46(9):933-43.10.1111/hepr.1263426666995Search in Google Scholar

26. GABAY O., SANCHEZ C. Epigenetics, sirtuins and osteoarthritis. Joint Bone Spine 2012; 79(6):570-3.10.1016/j.jbspin.2012.04.00522738809Search in Google Scholar

27. LING C., GROOP L. Epigenetics: a molecular link between environmental factors and type 2 diabetes. Diabetes 2009; 58(12):2718-25.10.2337/db09-1003278086219940235Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo