[1. DIAZ-SOTO G., de LUIS DA., CONDE-VICENTE R., IZAOLA-JAUREGUI O., RAMOS C., ROMERO E. Beneficial effects of liraglutide on adipocytokines, insulin sensitivity parameters and cardiovascular risk biomarkers in patients with type 2 diabetes: a prospective study. Diabetes Res Clin Pract 2014;104 (1):92-96.10.1016/j.diabres.2014.01.01924530118]Search in Google Scholar
[2. CHAUDHURI A., GHANIM H., VORA M., SIACL., KORZENIEWSKI K., DHINDSA S., et al. Exenatide exerts a potent anti-inflammatory effect. J Clin Endocrinol Metab 2011; 97 (1):198-207.10.1210/jc.2011-1508325193622013105]Search in Google Scholar
[3. MAKDISSI A., GHANIM H., VORA M., GREEN K., ABUAYSHEH S., CHAUDHURI A., et al. Sitagliptin exerts an anti-inflammatory action. J Clin Endocrinol Metab 2012; 97 (9):3333-41.10.1210/jc.2012-1544343158022745245]Search in Google Scholar
[4. QIAO H., REN H., ZHANG M., XIONG X., LV R. Liraglutide repairs the infarcted heart: The role of the SIRT1 (Parkin) mitophagy pathway. Mol Med Rep. 2018; 17 (3):3722-34.10.3892/mmr.2018.8371580217729328405]Search in Google Scholar
[5. WANG C., LI L., LIU S., LIAO G., LI L., CHEN Y., et al. GLP-1 receptor agonist ameliorates obesity-induced chronic kidney injury via restoring renal metabolism homeostasis. PLoS One. 2018;13(3):e0193473.10.1371/journal.pone.0193473587398729590132]Search in Google Scholar
[6. CHEN A., CHEN Z., XIA Y., LU D., YANG X., Sun A., et al. Liraglutide attenuates NLRP3 inflammasome-dependent pyroptosis via regulating SIRT1/NOX4/ROS pathway in H9c2 cells. Biochem Biophys Res Commun. 2018;499(2):267-72.10.1016/j.bbrc.2018.03.14229571736]Search in Google Scholar
[7. INOUE T., INOGUCHI T., SONODA N., HENDARTO H., MAKIMURA H., SASAKI S., et al. GLP-1 analog liraglutide protects against cardiac steatosis, oxidative stress and apoptosis in streptozotocin-induced diabetic rats. Atherosclerosis 2015; 240(1):250-9.10.1016/j.atherosclerosis.2015.03.02625818251]Search in Google Scholar
[8. AGRAWAL R., ZHUANG Y., CUMMINGS BP., STANHOPE KL., GRAHAM JL., HAVEL PJ., GOMEZ-PINILLA F. Deterioration of plasticity and metabolic homeostasis in the brain of the UCD-T2 DM rat model of naturally occurring type-2 diabetes. Biochem Biophys Acta. 2014;1842(9):1313-23.]Search in Google Scholar
[9. STRYCHARS J., RUGIELSKA Z., SWIDERSKA E., DRZEWOSKI J., SZEMRAJ J., SZMIGIERO L., SLIWINSKA A. SIRT1 as a therapeutic target in diabetic complications. Curr Med Chem. 2018; 25(9):1002-35.10.2174/092986732466617110710311429110598]Search in Google Scholar
[10. KAIDASHEV IP. Conception for permanent activation of nuclear factor kbeta as molecular basis for metabolic syndrome pathogenesis. Patol Fiziol Eksp Ter 2013; 3:65-72.]Search in Google Scholar
[11. SHOELSON SE., LEE J., Yuan M. Inflammation and the IKK beta/I kappa B/NF-kappa B axis in obesity and diet-induced insulin resistance. Int J Obes Relat Metab Disord 2003; 27(Suppl 3):S49-52.10.1038/sj.ijo.080250114704745]Search in Google Scholar
[12. DEFRONZO RA., RATNER RE., HAN J., KIM DD., FINEMAN MS., BARON AD. Effects of exenatide (exendin-4) on glycemic control and weight over 30 weeks in metformin-treated patients with type 2 diabetes. Diabetes care 2005; 28(5):1092-1100.10.2337/diacare.28.5.109215855572]Search in Google Scholar
[13. ROSENSTOCK J., BRAZG R., ANDRYUK PJ., LU K., STEIN P. Efficacy and safety of the dipeptidyl peptidase-4 inhibitor sitagliptin added to ongoing pioglitazone therapy in patients with type 2 diabetes: a 24-week, multicenter, randomized, double-blind, placebo-controlled, parallel-group study. Clin Ther 2006; 28 (10):1556-68.10.1016/j.clinthera.2006.10.00717157112]Search in Google Scholar
[14. NAUCK M., FRID A., HERMANSEN K., SHAH NS., TANKOVA T., MITHA IH., et al. Efficacy and safety comparison of liraglutide, glimepiride, and placebo, all in combination with metformin, in type 2 diabetes. Diabetes care 2009; 32 (1):84-90.10.2337/dc08-1355260683618931095]Search in Google Scholar
[15. CERIELLO A., NOVIALS A., ORTEGA E., CANIVELL S., LASALA L., PUJADAS G., et al. Glucagon-like peptide 1 reduces endothelial dysfunction, inflammation, and oxidative stress induced by both hyperglycemia and hypoglycemia in type 1 diabetes. Diabetes Care 2013; 36 (8):2346-2350.10.2337/dc12-2469371450923564922]Search in Google Scholar
[16. ZHU T., WU XL., ZHANG W., XIAO M. Glucagon like peptide-1 (GLP-1) modulates OVA-induced airway inflammation and mucus secretion involving a protein kinase A (PKA)-dependent nuclear factor-κB (NF-κB) signaling pathway in mice. Int J Mol Sci 2015; 16 (9):20195-20211.10.3390/ijms160920195461319726343632]Search in Google Scholar
[17. HATTORI Y., JOJIMA T., TOMIZAWA A., SATOH H., HATTORI S., KASAI K., et al. A glucagon-like peptide-1 (GLP-1) analogue, liraglutide, upregulates nitric oxide production and exerts anti-inflammatory action in endothelial cells. Diabetologia 2010; 53 (10):2256.10.1007/s00125-010-1831-820593161]Search in Google Scholar
[18. KRASNER NM., IDO Y., RUDERMAN NB., CACICEDO JM. Glucagon-like peptide-1 (GLP-1) analog liraglutide inhibits endothelial cell inflammation through a calcium and AMPK dependent mechanism. PLoS ONE 2014; 9 (5):e97554.10.1371/journal.pone.0097554402398424835252]Search in Google Scholar
[19. SHOELSON SE., HERRERO L., NAAZ A. Obesity, inflammation, and insulin resistance. Gastroenterology 2007; 132 (6):2169-80.10.1053/j.gastro.2007.03.05917498510]Search in Google Scholar
[20. BALESTRIERI ML., RIZZO MR., BARBIERI M., PAOLISSO P., D’ONOFRIO N., GIOVANE A., et al. Sirtuin 6 expression and inflammatory activity in diabetic atherosclerotic plaques: effects of incretin treatment. Diabetes 2015; 64 (4):1395-406.10.2337/db14-114925325735]Search in Google Scholar
[21. ISHIKAWA S., TAKEMITSU H., HABARA M., MORI N., YAMAMOTO I., ARAI T. Sirtuin 1 suppresses nuclear factor κB induced transactivation and pro-inflammatory cytokine expression in cat fibroblast cells. J Vet Med Sci 2016; 77 (12):1681-4.10.1292/jvms.15-0245471073026165138]Search in Google Scholar
[22. LEE JH., SONG MY., SONG EK., KIM EK., MOON WS., HAN MK., et al. Overexpression of SIRT1 protects pancreatic beta-cells against cytokine toxicity by suppressing the nuclear factor-kappa B signaling pathway. Diabetes 2009; 58 (2):344-351.10.2337/db07-1795262860719008341]Search in Google Scholar
[23. ZHANG XIU-LAI, MIN-LI CHEN, SHENG-LI ZHOU. Fentanyl increases colorectal carcinoma cell apoptosis by inhibition of NF-kB in a Sirt1-dependent manner. Asia Pacific Journal of Cancer prevention 2014;15(22):10015-20.10.7314/APJCP.2014.15.22.10015]Search in Google Scholar
[24. LV L., SHEN Z., ZHANG J., ZHANG H., DONG J., YAN Y., et al. Clinicopathological significance of SIRT1 expression in colorectal adenocarcinoma. Med Oncol 2014; 31(6):965.10.1007/s12032-014-0965-924816737]Search in Google Scholar
[25. TONG W., Lu L., QIU M., XIE Q., CHEN Y., SHEN W., et al. Liraglutide ameliorates non-alcoholic fatty liver disease by enhancing mitochondrial architecture and promoting autophagy through the SIRT1/SIRT3-FOXO3a pathway. Hepatol Res. 2016; 46(9):933-43.10.1111/hepr.1263426666995]Search in Google Scholar
[26. GABAY O., SANCHEZ C. Epigenetics, sirtuins and osteoarthritis. Joint Bone Spine 2012; 79(6):570-3.10.1016/j.jbspin.2012.04.00522738809]Search in Google Scholar
[27. LING C., GROOP L. Epigenetics: a molecular link between environmental factors and type 2 diabetes. Diabetes 2009; 58(12):2718-25.10.2337/db09-1003278086219940235]Search in Google Scholar