INFORMAZIONI SU QUESTO ARTICOLO

Cita

Abrahamsson, T. R., Jakobsson, H. E., Andersson, A. F., Björkstén, B., Engstrand, L., Jenmalm, M. C. (2014). Low gut microbiota diversity in early infancy precedes asthma at school age. Clin. Exper. Allergy, 44 (6), 842–850. https://doi.org/10.1111/cea.1225310.1111/cea.1225324330256 Search in Google Scholar

Arumugam, M., Raes, J., Pelletier, E., le Paslier, D., Yamada, T., Mende, D. R., Fernandes, G. R., Tap, J., Bruls, T., Batto, J.-M., et al. (2011). Enterotypes of the human gut microbiome. Nature, 473 (7346), 174–180. https://doi.org/10.1038/nature0994410.1038/nature09944372864721508958 Search in Google Scholar

Azad, M. B., Konya, T., Maughan, H., Guttman, D. S., Field, C. J., Chari, R. S., Sears, M. R., Becker, A. B., Scott, J. A., Kozyrskyj, A. L. (2013). Gut microbiota of healthy Canadian infants: Profiles by mode of delivery and infant diet at 4 months. Canad. Med. Assoc. J., 185 (5), 385–394. https://doi.org/10.1503/cmaj.12118910.1503/cmaj.121189360225423401405 Search in Google Scholar

Boxberger, M., Cenizo, V., Cassir, N., la Scola, B. (2021). Challenges in exploring and manipulating the human skin microbiome. Microbiome, 9 (1), 125. https://doi.org/10.1186/s40168-021-01062-510.1186/s40168-021-01062-5816613634053468 Search in Google Scholar

Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., Holmes, S. P. (2016). DADA2: High-resolution sample inference from Illumina amplicon data. Nature Meth., 13 (7), 581–583. https://doi.org/10.1038/nmeth.386910.1038/nmeth.3869492737727214047 Search in Google Scholar

Daneberga, Z., Nakazawa-Miklasevica, M., Berga-Svitina, E., Murmane, D., Isarova, D., Cupane, L., Masinska, M., Nartisa, I., Lazdane, A., Miklasevics, E. (2021). Urinary organic acids spectra in children with altered gut microbiota composition and autistic spectrum disorder. Nordic J. Psychiatry, 76 (7), 523-529. Search in Google Scholar

Fouhy, F., Ross, R. P., Fitzgerald, G. F., Stanton, C., Cotter, P. D. (2012). Composition of the early intestinal microbiota. Gut Microbes, 3 (3), 203–220. https://doi.org/10.4161/gmic.2016910.4161/gmic.20169342721322572829 Search in Google Scholar

Hill, C. J., Lynch, D. B., Murphy, K., Ulaszewska, M., Jeffery, I. B., O’Shea, C. A., Watkins, C., Dempsey, E., Mattivi, F., Tuohy, K., et al. (2017). Evolution of gut microbiota composition from birth to 24 weeks in the INFANTMET Cohort. Microbiome, 5 (1), 4. https://doi.org/10.1186/s40168-016-0213-y10.1186/s40168-016-0213-y524027428095889 Search in Google Scholar

Homann, C.-M., Rossel, C. A. J., Dizzell, S., Bervoets, L., Simioni, J., Li, J., Gunn, E., Surette, M. G., de Souza, R. J., Mommers, M., Hutton, E. K., et al. (2021). Infants’ first solid foods: Impact on gut microbiota development in two intercontinental cohorts. Nutrients, 13 (8), 2639. https://doi.org/10.3390/nu1308263910.3390/nu13082639840033734444798 Search in Google Scholar

Janda, J. M., Abbott, S. L. (2007). 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: Pluses, perils, and pitfalls. J. Clin. Microbiol., 45 (9), 2761–2764. https://doi.org/10.1128/JCM.01228-0710.1128/JCM.01228-07204524217626177 Search in Google Scholar

Katoh, K., Standley, D. M. (2013). MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol., 30 (4), 772–780. https://doi.org/10.1093/molbev/mst01010.1093/molbev/mst010360331823329690 Search in Google Scholar

Kevin Blighe, A. L. (2021). PCAtools: Everything Principal Component Analysis. https://Github.Com/Kevinblighe/PCAtools (12.09.2022). Search in Google Scholar

Kroiča, J., Reinis, A., Kakar, M., Delorme, M., Broks, R., Asare, L., Berezovska, M., Jansins, V., Zviedre, A., Enģelis, A., Saxena, A., Pētersons, A. (2020). Culture based evaluation of microbiota in children with acute appendicitis. Proc. Latvian Acad. Sci., Section B, 74 (2), 100–105. https://doi.org/10.2478/prolas-2020-001610.2478/prolas-2020-0016 Search in Google Scholar

Love, M. I., Huber, W., Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol., 15 (12), 550. https://doi.org/10.1186/s13059-014-0550-810.1186/s13059-014-0550-8430204925516281 Search in Google Scholar

McMurdie, P. J., Holmes, S. (2013). phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE, 8 (4), e61217. https://doi.org/10.1371/journal.pone.006121710.1371/journal.pone.0061217363253023630581 Search in Google Scholar

Morais, J., Marques, C., Teixeira, D., Durão, C., Faria, A., Brito, S., Cardoso, M., Macedo, I., Pereira, E., Tomé, T., Calhau, C. (2020). Extremely preterm neonates have more Lactobacillus in meconium than very preterm neonates: The in utero microbial colonization hypothesis. Gut Microbes, 12 (1). https://doi.org/10.1080/19490976.2020.178580410.1080/19490976.2020.1785804752439432658601 Search in Google Scholar

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al. (2011). Scikit-learn: Machine learning in python. J. Machine Learning Res., 12, 2825–2830. Search in Google Scholar

Penders, J., Vink, C., Driessen, C., London, N., Thijs, C., Stobberingh, E. E. (2005). Quantification of Bifidobacterium spp., Escherichia coli and Clostridium difficile in faecal samples of breast-fed and formula-fed infants by real-time PCR. FEMS Microbiol. Lett., 243 (1), 141–147. https://doi.org/10.1016/j.femsle.2004.11.05210.1016/j.femsle.2004.11.05215668012 Search in Google Scholar

Price, M. N., Dehal, P. S., Arkin, A. P. (2010). FastTree 2 – Approximately Maximum-Likelihood Trees for Large Alignments. PLoS ONE, 5 (3), e9490. https://doi.org/10.1371/journal.pone.000949010.1371/journal.pone.0009490283573620224823 Search in Google Scholar

R Core Team (2020). A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.eea.europa.eu/data-and-maps/indicators/oxygen-consuming-substances-in-rivers/r-development-core-team-2006 (accessed 14.09.2022). Search in Google Scholar

Ratsika, A., Codagnone, M. C., O’Mahony, S., Stanton, C., Cryan, J. F. (2021). Priming for life: Early life nutrition and the Microbiota-Gut-Brain Axis. Nutrients, 13 (2), 423. https://doi.org/10.3390/nu1302042310.3390/nu13020423791205833525617 Search in Google Scholar

Rinninella, E., Raoul, P., Cintoni, M., Franceschi, F., Miggiano, G., Gasbarrini, A., Mele, M. (2019). What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms, 7 (1), 14. https://doi.org/10.3390/microorganisms701001410.3390/microorganisms7010014635193830634578 Search in Google Scholar

Rizzatti, G., Lopetuso, L. R., Gibiino, G., Binda, C., Gasbarrini, A. (2017). Proteobacteria: A common factor in human diseases. BioMed Res. Int., 2017, 1–7. https://doi.org/10.1155/2017/935150710.1155/2017/9351507568835829230419 Search in Google Scholar

Roger, L. C., Costabile, A., Holland, D. T., Hoyles, L., McCartney, A. L. (2010). Examination of faecal bifidobacterium populations in breast- and formula-fed infants during the first 18 months of life. Microbiology, 156 (11), 3329–3341. https://doi.org/10.1099/mic.0.043224-010.1099/mic.0.043224-020864478 Search in Google Scholar

Saturio, S., Nogacka, A. M., Alvarado-Jasso, G. M., Salazar, N., de los Reyes-Gavilán, C. G., Gueimonde, M., Arboleya, S. (2021). Role of bifidobacteria on infant health. Microorganisms, 9 (12), 2415. https://doi.org/10.3390/microorganisms912241510.3390/microorganisms9122415870844934946017 Search in Google Scholar

Vester-Andersen, M. K., Mirsepasi-Lauridsen, H. C., Prosberg, M. V., Mortensen, C. O., Träger, C., Skovsen, K., Thorkilgaard, T., Nøjgaard, C., Vind, I., Krogfelt, K. A., Sørensen, N., Bendtsen, F., Petersen, A. M. (2019). Increased abundance of proteobacteria in aggressive Crohn’s disease seven years after diagnosis. Sci. Rep., 9 (1), 13473. https://doi.org/10.1038/s41598-019-49833-3.10.1038/s41598-019-49833-3674895331530835 Search in Google Scholar

eISSN:
2255-890X
Lingua:
Inglese
Frequenza di pubblicazione:
6 volte all'anno
Argomenti della rivista:
General Interest, Mathematics, General Mathematics