INFORMAZIONI SU QUESTO ARTICOLO

Cita

Bennett, M. L., Bennett, F. C. (2020). The influence of environment and origin on brain resident macrophages and implications for therapy. Nat. Neurosci. 23 (2), 157–166.10.1038/s41593-019-0545-631792468 Search in Google Scholar

Biswas, S. K., Mantovani, A. (2010). Macrophage plasticity and interaction with lymphocyte subsets: Cancer as a paradigm. Nat. Immunol. 11 (10), 889–896.10.1038/ni.193720856220 Search in Google Scholar

Burke, B., Lewis, C. E., (2002). The Macrophage. 2nd Edition. Oxford University Press. 680 pp. Search in Google Scholar

Caputa, G., Castoldi, A., Pearce, E. J. (2019). Metabolic adaptations of tissue-resident immune cells. Nat. Immunol., 20 (7), 793–801.10.1038/s41590-019-0407-031213715 Search in Google Scholar

Cherry, J. D., Olschowka, J. A., O’Banion, M. K. (2014). Are “resting” microglia more “m2”? Front Immunol., 5, 594. Search in Google Scholar

Colgan, S. P., Furuta, G. T., Taylor, C. T. (2020). Hypoxia and innate immunity: Keeping up with the HIFsters. Annu. Rev. Immunol., 38, 341–363.10.1146/annurev-immunol-100819-121537792452831961750 Search in Google Scholar

Corraliza, I. M., Soler, G., Eichmann, K., Modolell, M. (1995). Arginase induction by suppressors of nitric oxide synthesis (IL-4, IL-10 and PGE2) in murine bone-marrow-derived macrophages. Biochem. Biophys. Res. Commun., 206 (2), 667–673.10.1006/bbrc.1995.10947530004 Search in Google Scholar

Dahdah, A., Gautier, G., Attout, T., Fiore, F., Lebourdais, E., Msallam, R., Daėron, M., Monteiro, R. C., Benhamou, M., Charles, N., Davoust, J., Blank, U., Malissen, B., Launay, P. (2014). Mast cells aggravate sepsis by inhibiting peritoneal macrophage phagocytosis. J. Clin. Invest., 124 (10), 4577–4589.10.1172/JCI75212419100225180604 Search in Google Scholar

De Palma, M., Biziato, D., Petrova, T. V. (2017). Microenvironmental regulation of tumour angiogenesis. Nat. Rev. Cancer, 17 (8), 457–474.10.1038/nrc.2017.5128706266 Search in Google Scholar

Filiano, A. J., Gadani, S. P., Kipnis, J. (2015). Interactions of innate and adaptive immunity in brain development and function. Brain Res., 1617 18–27.10.1016/j.brainres.2014.07.050432067825110235 Search in Google Scholar

Frank, M. G., Wieseler-Frank, J. L., Watkins, L. R., Maier, S. F. (2006). Rapid isolation of highly enriched and quiescent microglia from adult rat hippocampus: Immunophenotypic and functional characteristics. J. Neurosci. Methods, 151 (2), 121–130.10.1016/j.jneumeth.2005.06.02616125247 Search in Google Scholar

Gordon, S., Martinez, F. O. (2010). Alternative activation of macrophages: Mechanism and functions. Immunity, 32 (5), 593–604.10.1016/j.immuni.2010.05.00720510870 Search in Google Scholar

Guo, Y., Hong, W., Wang, X., Zhang, P., Körner, H., Tu, J., Wei, W. (2019). MicroRNAs in mcroglia: How do microRNAs affect activation, inflammation, polarization of microglia and mediate the interaction between microglia and glioma? Front Mol. Neurosci., 12, 125. Search in Google Scholar

Hashimoto, D., Chow, A., Noizat, C., Teo, P., Beasley, M. B., Leboeuf, M., Becker, C. D., See, P., Price, J., Lucas, D., et al. (2013). Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity, 38 (4), 792–804.10.1016/j.immuni.2013.04.004385340623601688 Search in Google Scholar

Jantsch, J., Schödel, J. (2015). Hypoxia and hypoxia-inducible factors in myeloid cell-driven host defense and tissue homeostasis. Immunobiology, 220 (2), 305–314.10.1016/j.imbio.2014.09.00925439732 Search in Google Scholar

Ke, X., Chen, C., Song, Y., Cai, Q., Li, J., Tang, Y., Han, X., Qu, W., Chen, A., Wang, H., Xu, G., Liu, D. (2019). Hypoxia modifies the polarization of macrophages and their inflammatory microenvironment, and inhibits malignant behavior in cancer cells. Oncol. Lett., 18 (6), 5871–5878.10.3892/ol.2019.10956686514931788060 Search in Google Scholar

Kumar, V., Bhat, E. b. K. H. (2019). Macrophages: The potent immuno-regulatory innate immune cells. In: Bhat, K. H. (Ed.). Macrophage Activation: Biology and Disease. https://www.intechopen.com/chapters/68185 (accessed 15.09.2021). Search in Google Scholar

Lee, J. Y., Han, S. H., Park, M. H., Song, I. S., Choi, M. K., Yu, E., Park, C. M., Kim, H. J., Kim, S. H., Schuchman, E. H., Jin, H. K., Bae, J. S. (2020). N-AS-triggered SPMs are direct regulators of microglia in a model of Alzheimer’s disease. Nat. Commun., 11 (1), 2358.10.1038/s41467-020-16080-4721787732398649 Search in Google Scholar

Liu, T., Liu, F., Peng, L. W., Chang, L., Jiang, Y. M. (2018). The peritoneal macrophages in inflammatory diseases and abdominal cancers. Oncol. Res., 26 (5), 817–826.10.3727/096504017X15130753659625784475529237519 Search in Google Scholar

Loža, V., Feldmane, G. (1996). Biomodulatory functions of double-stranded ribonucleic acids. Acta Med. Balt., 3 12–17. Search in Google Scholar

Loža, V., Pilmane, M., Brūvere, R., Feldmane, G., Volrāte, Ā., Ose, V., Sundler, F. (1996). Double-stranded ribonucleic acids in cells during induced differentiation. Acta Med. Balt., 3 22–30. Search in Google Scholar

Melief, J., Sneeboer, M. A., Litjens, M., Ormel, P. R., Palmen, S. J., Huitinga, I., Kahn, R. S., Hol, E. M., de Witte, L. D. (2016). Characterizing primary human microglia: A comparative study with myeloid subsets and culture models. Glia, 64 (11), 1857–1868.10.1002/glia.2302327442614 Search in Google Scholar

Morris, S. M., Jr. (2007). Arginine metabolism: Boundaries of our knowledge. J. Nutr., 137 (6 Suppl 2), 1602s–1609s.10.1093/jn/137.6.1602S17513435 Search in Google Scholar

Mosser, D. M., Edwards, J. P. (2008). Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol., 8 (12), 958–969.10.1038/nri2448272499119029990 Search in Google Scholar

Munder, M. (2009). Arginase: An emerging key player in the mammalian immune system. Brit. J. Pharmacol., 158 (3), 638–651.10.1111/j.1476-5381.2009.00291.x276558619764983 Search in Google Scholar

Okabe, Y., Medzhitov, R. (2016). Tissue biology perspective on macrophages. Nat. Immunol., 17 (1), 9–17.10.1038/ni.332026681457 Search in Google Scholar

Pjanova, D., Mandrika, L., Petrovska, R., Vaivode, K., Donina, S. (2019). Comparison of the effects of bacteriophage-derived dsRNA and poly(I:C) on ex vivo cultivated peripheral blood mononuclear cells. Immunol. Lett., 212, 114–119.10.1016/j.imlet.2019.06.010 Search in Google Scholar

Régnier-Vigouroux, A. (2003). The mannose receptor in the brain. Int. Rev. Cytol., 226, 321–342.10.1016/S0074-7696(03)01006-4 Search in Google Scholar

Reiner, N. E. (2009). Methods in molecular biology. Macrophages and dendritic cells. Methods and protocols. Preface. Methods Mol. Biol., 531, v-vi.10.1007/978-1-59745-396-719422172 Search in Google Scholar

Sica, A., Mantovani, A. (2012). Macrophage plasticity and polarization: in vivo veritas. J. Clin. Invest., 122 (3), 787–795.10.1172/JCI59643328722322378047 Search in Google Scholar

Skivka, L., Fedorchuk, O., Rudyk, M., Pozur, V., Khranovska, N., Grom, M. Y., Nowicky, J. (2013). Antineoplastic drug NSC631570 modulates functions of hypoxic macrophages. Cytol. Genet., 47 (5), 318–328.10.3103/S0095452713050095 Search in Google Scholar

Suresh, R., Mosser, D. M. (2013). Pattern recognition receptors in innate immunity, host defense, and immunopathology. Adv. Physiol. Educ., 37 (4), 284–291.10.1152/advan.00058.2013408909224292903 Search in Google Scholar

Taylor, C. T., Colgan, S. P. (2017). Regulation of immunity and inflammation by hypoxia in immunological niches. Nat. Rev. Immunol., 17 (12), 774–785.10.1038/nri.2017.103579908128972206 Search in Google Scholar

Taylor, P. R., Martinez-Pomares, L., Stacey, M., Lin, H. H., Brown, G. D., Gordon, S. (2005). Macrophage receptors and immune recognition. Annu. Rev. Immunol., 23 901–944.10.1146/annurev.immunol.23.021704.11581615771589 Search in Google Scholar

Theret, M., Mounier, R., Rossi, F. (2019). The origins and non-canonical functions of macrophages in development and regeneration. Development, 146 (9), dev156000.10.1242/dev.15600031048317 Search in Google Scholar

Veinalde, R., Petrovska, R., Brûvere, R., Feldmane, G., Pjanova, D. (2014). Ex vivo cytokine production in peripheral blood mononuclear cells after their stimulation with dsRNA of natural origin. Biotechnol. Appl. Biochem., 61 (1), 65–73.10.1002/bab.114323941496 Search in Google Scholar

Vercammen, E., Staal, J., Beyaert, R. (2008). Sensing of viral infection and activation of innate immunity by toll-like receptor 3. Clin. Microbiol. Rev., 21 (1), 13–25.10.1128/CMR.00022-07222384318202435 Search in Google Scholar

Wang, L. X., Zhang, S. X., Wu, H. J., Rong, X. L., Guo, J. (2019). M2b macrophage polarization and its roles in diseases. J. Leukoc. Biol., 106 (2), 345–358.10.1002/JLB.3RU1018-378RR737974530576000 Search in Google Scholar

Wu, Z., Zhang, Z., Lei, Z., Lei, P. (2019). CD14: Biology and role in the pathogenesis of disease. Cytokine Growth Factor Rev., 48, 24–31.10.1016/j.cytogfr.2019.06.00331296363 Search in Google Scholar

Yang, Z., Ming, X. F. (2014). Functions of arginase isoforms in macrophage inflammatory responses: Impact on cardiovascular diseases and metabolic disorders. Front Immunol., 5, 533.10.3389/fimmu.2014.00533420988725386179 Search in Google Scholar

Zhao, Y. L., Tian, P. X., Han, F., Zheng, J., Xia, X. X., Xue, W. J., Ding, X. M., Ding, C. G. (2017). Comparison of the characteristics of macrophages derived from murine spleen, peritoneal cavity, and bone marrow. J. Zhejiang Univ. Sci. B., 18 (12), 1055–1063.10.1631/jzus.B1700003574228829204985 Search in Google Scholar

eISSN:
2255-890X
Lingua:
Inglese
Frequenza di pubblicazione:
6 volte all'anno
Argomenti della rivista:
General Interest, Mathematics, General Mathematics