INFORMAZIONI SU QUESTO ARTICOLO

Cita

Abdu-Allah, H., El-Shorbagi, A., Abdel-Moty, S., El-Awady, R., Abdel-Alim, A. (2016). 5-Aminosalicylic acid (5-ASA): A unique anti-inflammatory salicylate. Med. Chem.,6 (5), 306–315.10.4172/2161-0444.1000361Search in Google Scholar

Andrews, C. G. (2011). Mesalazine (5-aminosalicylic acid) alters faecal bacterial profiles, but not mucosal proteolytic activity in diarrhoea-predominant irritable bowel syndrome. Aliment. Pharmacol. Ther.,34 (3), 374–383.10.1111/j.1365-2036.2011.04732.x21671966Search in Google Scholar

Axelrad, J. L. (2016). Inflammatory bowel disease and cancer: The role of inflammation, immunosuppression, and cancer treatment. World J. Gastroenterol.,22 (20), 28.10.3748/wjg.v22.i20.4794487387227239106Search in Google Scholar

Baumgart, D. (2012). Crohn’s Disease and Ulcerative Colitis: From Epidemiology and Immunobiology to a Rational Diagnostic and Therapeutic Approach. Springer Science & Business Media. 695 pp.10.1007/978-1-4614-0998-4Search in Google Scholar

Belzer, C., Chia, L., Aalvink, S., Chamlagain, B., Piironen, V., Knol, J., de Vos, W. (2017). Microbial metabolic networks at the mucus layer lead to diet-independent butyrate and vitamin B12 production by intestinal symbionts. MBio,8 (5).10.1128/mBio.00770-17560593428928206Search in Google Scholar

Berends, S. S. (2019). Clinical pharmacokinetic and pharmacodynamic considerations in the treatment of ulcerative colitis. Clin. Pharmacokinet.,58 (1), 15–37.10.1007/s40262-018-0676-z632608629752633Search in Google Scholar

Bland, J. (2016). Intestinal microbiome, Akkermansia muciniphila, and medical nutrition therapy. Integr. Med. (Encinitas),15 (5), 14–16.Search in Google Scholar

Chia, L. W., Knol, J., Belzer, C. (2018). Deciphering the trophic interaction between Akkermansia muciniphila and the butyrogenic gut commensal Anaerostipes caccae using a metatranscriptomic approach. Antonie Van Leeuwenhoek,111 (6), 859–873.10.1007/s10482-018-1040-x594575429460206Search in Google Scholar

Cuervo, A. S.-M. (2013). Fiber from a regular diet is directly associated with fecal short-chain fatty acid concentrations in the elderly. Nutr. Res.,33 (10), 811–816.10.1016/j.nutres.2013.05.01624074739Search in Google Scholar

Deloménie, C. F. (2001). Identification and functional characterization of arylamine N-acetyltransferases in eubacteria: Evidence for highly selective acetylation of 5-aminosalicylic acid. J. Bacteriol.,183 (11), 3417–3427.10.1128/JB.183.11.3417-3427.20019964011344150Search in Google Scholar

Farzaneh, H., Mohammad, E. H., Gharavinia, A., Mahdavi, S. B., Akbarpour, M. J., Baghaei, A., Emami., M. H. (2017). Quality of life in inflammatory bowel disease patients: A cross-sectional study. J. Res. Med. Sci.,22, 104.10.4103/jrms.JRMS_975_16Search in Google Scholar

Gobert, A. P., Sagrestani, G., Wilson, E. D., Verriere, T. G., Dapoigny, M., Del’homme, C., Bernalier-Donadille, A. (2016). The human intestinal microbiota of constipated-predominant irritable bowel syndrome patients exhibits anti-inflammatory properties. Sci. Rep.,6, Article No. 39399.10.1038/srep39399Search in Google Scholar

Ham, M. M. (2012). Mesalamine in the treatment and maintenance of remission of ulcerative colitis. Expert Rev. Clin. Pharmacol.,5 (2), 113–123.10.1586/ecp.12.2331432822390554Search in Google Scholar

Herreweghen, F. A.-S.-V. (2017). In vitro colonisation of the distal colon by Akkermansia muciniphila is largely mucin and pH dependent. Beneficial Microbes,8 (1), 81–96.10.3920/BM2016.001327824274Search in Google Scholar

Ikeda, I. T. (2007). 5-aminosalicylic acid given in the remission stage of colitis suppresses colitis-associated cancer in a mouse colitis model. Clin. Cancer Res.,13 (21), 6527–6531.10.1158/1078-0432.CCR-07-120817975166Search in Google Scholar

Ye, B. (2015). Mesalazine preparations for the treatment of ulcerative colitis: Are all created equal? World J. Gastrointest. Pharmacol. Ther.,6 (4), 137–144.10.4292/wjgpt.v6.i4.137Search in Google Scholar

Jean, L., Audrey, M., Beauchemin, C., Consrtium, O. (2018). Economic evaluations of treatments for inflammatory bowel diseases: A literature review. Can. J. Gastroenterol. Hepatol.,2018, 7439730.10.1155/2018/7439730Search in Google Scholar

Kaiser, G. Y. (1999). Mesalamine blocks tumor necrosis factor growth inhibition and nuclear factor kappaB activation in mouse colonocytes. Gastroenterology,116 (3), 602–609.10.1016/S0016-5085(99)70182-4Search in Google Scholar

Kim, D. (2015). Gut microbiota-mediated drug-antibiotic interactions. Drug Metab. Dispos.,43 (10), 1581–1589.10.1124/dmd.115.06386725926432Search in Google Scholar

Laffin, M. F. (2019). A high-sugar diet rapidly enhances susceptibility to colitis via depletion of luminal short-chain fatty acids in mice. Sci. Rep.,9, 12294.10.1038/s41598-019-48749-2Search in Google Scholar

Lopez-Siles, M., Enrich-Capó, N., Aldegue, X., Sabat-Mir, M., Duncan, S., Garcia-Gil, L., Martinez-Medina, M. (2018). Alterations in the abundance and co-occurrence of Akkermansia muciniphila and Faecalibacterium prausnitzii in the colonic mucosa of inflammatory bowel disease subjects. Front Cell Infect. Microbiol.,7 (8), 281.10.3389/fcimb.2018.00281613795930245977Search in Google Scholar

Machiels, K. J., Arijs, I., Eeckhaut, V. V., Verbeke, K., Ferrante, M. V. (2014). A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut,63 (8), 1275–1283.10.1136/gutjnl-2013-304833Search in Google Scholar

Martín, R. C.-H. (2014). The commensal bacterium Faecalibacterium prausnitzii is protective in DNBS-induced chronic moderate and severe colitis models. Inflamm. Bowel Dis.,20 (3), 417–430.10.1097/01.MIB.0000440815.76627.6424418903Search in Google Scholar

Parada, V. D. (2019). Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol.,10, 277.10.3389/fimmu.2019.00277Search in Google Scholar

Perrotta, C. P. (2015). Five-aminosalicylic acid: An update for the reappraisal of an old drug. Gastroenterol. Res. Pract.,2015, 456895, 1–9.10.1155/2015/456895432079325685145Search in Google Scholar

Probert, C. D. (2014). Combined oral and rectal mesalazine for the treatment of mild-to-moderately active ulcerative colitis: Rapid symptom resolution and improvements in quality of life. J. Crohn’s Colitis,8 (3), 200–207.10.1016/j.crohns.2013.08.00724012063Search in Google Scholar

Ramirez-Alcantara, V. M. (2014). Acute murine colitis reduces colonic 5-aminosalicylic acid metabolism by regulation of N-acetyltransferase-2. Amer. J. Physiol. Gastrointest. Liver Physiol.,306 (G), 1002–1010.10.1152/ajpgi.00389.2013404211724742986Search in Google Scholar

Rubin, D. (2014). Why it’s time for updated U.S. colorectal cancer prevention guidelines in inflammatory bowel disease. Gastrointest. Endosc.,80 (5), 849–851.10.1016/j.gie.2014.08.030Search in Google Scholar

Rubin, D. C. (2008). Colorectal cancer prevention in inflammatory bowel disease and the role of 5-aminosalicylic acid: A clinical review and update. Inflamm. Bowel Dis.,14 (2), 265–274.10.1002/ibd.2029717932965Search in Google Scholar

Sartor, R. W. (2017). Roles for intestinal bacteria, viruses, and fungi in pathogenesis of inflammatory bowel diseases and therapeutic approaches. Gastroeterology.,155 (2), 327–339.10.1053/j.gastro.2016.10.012551175627769810Search in Google Scholar

Sasaki, M., Klapproth, J. (2012). The role of bacteria in the pathogenesis of ulcerative colitis. J. Signal Transduct., 2012, 704953.10.1155/2012/704953334863522619714Search in Google Scholar

Sheehan, D. S. (2017). The gut microbiota in inflammatory bowel disease. Gastroenterol. Clin. North Amer.,46, 143–154.10.1016/j.gtc.2016.09.01128164847Search in Google Scholar

Sonu, I. L. (2010). Clinical pharmacology of 5-ASA compounds in inflammatory bowel disease. Gastroenterol. Clin. North. Amer.,39 (3), 559–599.10.1016/j.gtc.2010.08.01120951918Search in Google Scholar

Thangaraju, M. C. (2009). GPR109A is a g-protein–coupled receptor for the bacterial fermentation product butyrate and functions as a tumor suppressor in colon. Cancer Res.,69, 2826–2832.10.1158/0008-5472.CAN-08-4466374783419276343Search in Google Scholar

van der Beek, C., Dejong, C., Troost, F., Masclee, A., Lenaerts, K. (2017). Role of short-chain fatty acids in colonic inflammation, carcinogenesis, and mucosal protection and healing. Nutr. Rev.,75 (4), 286–305.10.1093/nutrit/nuw06728402523Search in Google Scholar

Wilson, I. N. (2017). Gut microbiome interactions with drug metabolism, efficacy and toxicity. Transl. Res.,179, 204–222.10.1016/j.trsl.2016.08.002571828827591027Search in Google Scholar

Xinqiang, W., Yuanbing, W., Liangmei, H., Longhuo, W., Xiangcai, W., Zhiping, L. (2018). Effects of the intestinal microbial metabolite butyrate on the development of colorectal cancer. J. Cancer.,9 (14), 2510–2517.10.7150/jca.25324Search in Google Scholar

Xu, J., Chen, N., Wu, Z., Song, Y., Zhang, Y., Wu, N., Zhang, F., Ren, X., Liu, Y. (2018). 5-Aminosalicylic acid alters the gut bacterial microbiota in patients with ulcerative colitis. Frontiers Microbiol.,9, 1274.10.3389/fmicb.2018.01274600837629951050Search in Google Scholar

Xue, L. H. (2012). The possible effects of mesalazine on the intestinal microbiota. Aliment. Pharmacol. Ther.,36, 811–814.10.1111/apt.1203422984958Search in Google Scholar

Xue, L., Huang, Z., Chen, X. Z. (2012). The possible effects of mesalazine on the intestinal microbiota. Aliment. Pharmacol. Ther.,36, 811–814.10.1111/apt.12034Search in Google Scholar

Zhang, S. F. (2018). 5-Aminosalicylic acid downregulates the growth and virulence of Escherichia coli associated with IBD and colorectal cancer, and upregulates host anti-inflammatory activity. J. Antibiot. (Tokyo),71 (11), 950–961.10.1038/s41429-018-0081-830050110Search in Google Scholar

eISSN:
2255-890X
Lingua:
Inglese
Frequenza di pubblicazione:
6 volte all'anno
Argomenti della rivista:
Interesse generale, Matematica, Matematica generale