Accesso libero

Three-Dimensional Underwater Path Planning Based on Modified Potential Field Algorithm in Time-Varying Current

INFORMAZIONI SU QUESTO ARTICOLO

Cita

The article addresses the three-dimensional (3D) underwater path planning problem of an autonomous underwater vehicle (AUV) in a time-varying current. A modified artificial potential field algorithm combining the velocity vector synthesis method is proposed to search for the optimal path. The modified potential field (MPF) algorithm is designed to dynamically plan the non-collision path. Meanwhile, this modified method is also proved to be an effective solution to the goals not reachable with obstacles nearby (GNRON), U-shaped trap, and rotation unreachable problems. To offset the influence of time-varying current, the velocity synthesis approach is designed to adjust the AUV movement direction. Besides, considering path planning in the complex underwater environment, the multi-beam forward-looking sonar (FLS) model is used. Finally, simulation studies substantiate that the designed algorithm can implement the AUV path planning effectively and successfully in a 3D underwater environment.

eISSN:
2083-7429
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences