Accesso libero

An Improved Dynamic Surface Sliding Mode Method for Autonomous Cooperative Formation Control of Underactuated USVS with Complex Marine Environment Disturbances

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. P.N.N. Thanh, P.M. Tom and H.P.H. Anh, ‘A new approach for three-dimensional trajectory tracking control of under-actuated AUVs with model uncertainties,’ Ocean Engineering, vol. 228, pp. 1-17, May. 2021. doi:10.1016/j.oceaneng.2021.108951. Open DOISearch in Google Scholar

2. P.J.B. Sanchez, F.P.G. Marquez, S. Govindara, A. But, B. Sportich, S. Marini, V. Jantara and M. Papaelias, ‘Use of UIoT for offshore surveys through autonomous vehicles,’ Polish Maritime Research, vol. 28, no. 3, pp. 175-189, Oct. 2021. doi:10.2478/pomr-2021-0044. Open DOISearch in Google Scholar

3. X.Y. Zhou, P. Wu, H.F. Zhang, W.H. Guo and Y.C. Liu, ‘Learn to Navigate: Cooperative path planning for unmanned surface vehicles using deep reinforcement learning,’ IEEE Access, vol. 7, pp. 165262-165278, Feb. 2019. doi:10.1109/ACCESS.2019.2953326. Open DOISearch in Google Scholar

4. H.B. Huang, M. Gong, Y.F. Zhuang, S. Sharma and D.G. Xu, ‘A new guidance law for trajectory tracking of an underactuated unmanned surface vehicle with parameter perturbations,’ Ocean Engineering, vol. 175, pp. 217-222, Mar. 2019. doi:10.1016/j.oceaneng. 2019.02.042. Open DOISearch in Google Scholar

5. L.G. Li, Z.Y. Pei, J.C. Jin and Y.S. Dai, ‘Control of unmanned surface vehicle along the desired trajectory using improved line of sight and estimated sideslip angle,’ Polish Maritime Research, vol. 28, no. 2, pp. 18-26, Jul. 2021. doi:10.2478/pomr-2021-0017. Open DOISearch in Google Scholar

6. S.S. Wang and Y.L. Tuo, ‘Robust trajectory tracking control of underactuated surface vehicles with prescribed performance,’ Polish Maritime Research, vol. 17, no. 4, pp. 148-156, Dec. 2020. doi:10.2478/pomr-2020-0075. Open DOISearch in Google Scholar

7. A. Stateczny and P. Burdziakowski, ‘Universal autonomous control and management system for multipurpose unmanned surface vessel,’ Polish Maritime Research, vol. 26, no. 1, pp. 30-39, Apr. 2019. doi:10.2478/pomr-2019-0004. Open DOISearch in Google Scholar

8. Z.P. Dong, Y. Liu, H. Wang and T. Qin, ‘Method of cooperative formation control for underactuated USVs based on nonlinear backstepping and cascade system theory,’ Polish Maritime Research, vol. 28, no. 1, pp. 149-162, Mar. 2021. doi:10.2478/pomr-2021-0014. Open DOISearch in Google Scholar

9. J.A. Gonzalez-Prieto, C. Perez-Collazo and Y. Singh, ‘Adaptive integral sliding mode based course keeping control of unmanned surface vehicle,’ Journal of Marine Science and Engineering, vol. 10, no. 1, pp. 1-20, Jan. 2022. doi:10.3390/jmse10010068. Open DOISearch in Google Scholar

10. J.Y. Zhuang, L. Zhang, Z.H. Qin, H.B. Sun, B. Wang and J. Cao, ‘Motion control and collision avoidance algorithm for unmanned surface vehicle swarm in practical maritime environment,’ Polish Maritime Research, vol. 26, no. 1, pp.107−116, Apr. 2019. doi:10.2478/pomr-2019-0012. Open DOISearch in Google Scholar

11. R.L. Miao, L.X. Wang and S. Pang, ‘Coordination of distributed unmanned surface vehicles via model-based reinforcement learning methods,’ Applied Ocean Research, vol. 122, pp. 1-15, May. 2022. doi:10.1016/j.apor.2022.103106. Open DOISearch in Google Scholar

12. L. Rowinski and M. Kaczmarczyk, ‘Evaluation of effectiveness of waterjet propulsor for a small underwater vehicle,’ Polish Maritime Research, vol. 28, no. 4, pp. 30-41, Jan. 2022. doi: 10.2478/pomr-2021-0047. Open DOISearch in Google Scholar

13. G.G. Tan, J. Zou, J.Y. Zhuang, L. Wan, H.B. Sun and Z.Y. Sun, ‘Fast marching square method based intelligent navigation of the unmanned surface vehicle swarm in restricted waters,’ Applied Ocean Research, vol. 95, pp. 1-15, Feb. 2020. doi:10.1016/j.apor.2019.102018. Open DOISearch in Google Scholar

14. H.N. Esfahani and R. Szlapczynski, ‘Model predictive super-twisting sliding mode control for an autonomous surface vehicle,’ Polish Maritime Research, vol. 26, no. 3, pp. 163−171, Sept. 2019. doi:10.2478/pomr-2019-0057. Open DOISearch in Google Scholar

15. X.L. Jiang and G.H. Xia, ‘Sliding mode formation control of leaderless unmanned surface vehicles with environmental disturbances,’ Ocean Engineering, vol. 244, pp. 1-9, Jan. 2022. doi:10.1016/j.oceaneng.2021.110301. Open DOISearch in Google Scholar

16. K. Shojaei, ‘Observer-based neural adaptive formation control of autonomous surface vessels with limited torque,’ Robotics and Autonomous Systems, vol. 78, pp. 83-96, Apr. 2016. doi: 10.1016/j.robot.2016.01.005. Open DOISearch in Google Scholar

17. J. Ghommam and M. Saad, ‘Adaptive leader-follower formation control of underactuated surface vessels under asymmetric range and bearing constraints,’ IEEE Transactions on Vehicular Technology, vol. 67, no. 2, pp. 852-865, Feb. 2018. doi:10.1109/TVT.2017.2760367. Open DOISearch in Google Scholar

18. D.S. Wang and M.Y. Fu, ‘Adaptive formation control for waterjet USV with input and output constraints based on bioinspired neurodynamics,’ IEEE Access, vol. 7, pp. 165852-165861, Dec. 2019. doi:10.1109/ACCESS.2019.2953563. Open DOISearch in Google Scholar

19. S.W. Wang, F. Ma, X.P. Yan, P. Wu and Y.C. Liu, ‘Adaptive and extendable control of unmanned surface vehicle formations using distributed deep reinforcement learning,’ Applied Ocean Research, vol. 110, pp. 1-28, May. 2021. doi:10.1016/j.apor.2021.102590. Open DOISearch in Google Scholar

20. L.Y. Chen, H. Hopman and R.R. Negenborn, ‘Distributed model predictive control for vessel train formations of cooperative multi-vessel systems,’ Transportation Research Part C-Emerging Technologies, vol. 92, pp. 101-118, Jul. 2018. doi:10.1016/j.trc.2018.04.013. Open DOISearch in Google Scholar

21. M.Y. Fu and L.L. Yu, ‘Finite-time extended state observer-based distributed formation control for marine surface vehicles with input saturation and disturbances,’ Ocean Engineering, vol. 159, pp. 219-227, Jul. 2018. doi:10.1016/j.oceaneng.2018.04.016. Open DOISearch in Google Scholar

22. B. Huang, S. Song, C. Zhu, J. Li and B. Zhou, ‘Finite-time distributed formation control for multiple unmanned surface vehicles with input saturation,’ Ocean Engineering, vol. 233, pp. 1-14, Aug. 2021. doi:10.1016/j.oceaneng.2021.109158. Open DOISearch in Google Scholar

23. S.L. Dai, S.D. He, H. Lin and C. Wang, ‘Platoon formation control with prescribed performance guarantees for USVs,’ IEEE Transactions on Industrial Electronics, vol. 65, no. 5, pp. 4237-4246, May. 2018. doi:10.1109/TIE.2017.2758743. Open DOISearch in Google Scholar

24. J. Ghommam, M. Saad, F. Mnif and Q.M. Zhu, ‘Guaranteed performance design for formation tracking and collision avoidance of multiple USVs with disturbances and unmodeled dynamics,’ IEEE Systems Journal, vol. 15, no. 3, pp. 4346-4357, Sep. 2021. doi:10.1109/JSYST.2020.3019169. Open DOISearch in Google Scholar

25. X. Jin, ‘Fault tolerant finite-time leader–follower formation control for autonomous surface vessels with LOS range and angle constraints,’ Automatica, vol. 68, pp. 228-236, Jun. 2016. doi:10.1016/j.automatica.2016.01.064. Open DOISearch in Google Scholar

26. Y. Lu, G.Q. Zhang, Z.J. Sun and W.D. Zhang, ‘Robust adaptive formation control of underactuated autonomous surface vessels based on MLP and DOB,’ Nonlinear Dynamics, vol. 94, no. 1, pp. 503-519, Oct. 2018. doi:10.1007/s11071-018-4374-z. Open DOISearch in Google Scholar

27. B.S. Park and S.J. Yoo, ‘Adaptive-observer-based formation tracking of networked uncertain underactuated surface vessels with connectivity preservation and collision avoidance,’ Journal of The Franklin Institute-Engineering and Applied Mathematics, vol. 356, no. 15, pp. 7947-7966, Oct. 2019. doi:10.1016/j.jfranklin.2019.04.017. Open DOISearch in Google Scholar

28. H.N. Esfahani, R. Szlapczynski and H. Ghaemi, ‘High performance super-twisting sliding mode control for a maritime autonomous surface ship (MASS) using ADP-Based adaptive gains and time delay estimation,’ Ocean Engineering, vol. 191, pp. 1-19, Nov. 2019. doi: 10.1016/j.oceaneng.2019.106526. Open DOISearch in Google Scholar

29. K. Xue and T.Y. Wu, ‘Distributed consensus of USVs under heterogeneous UAV-USV multi-agent systems cooperative control scheme,’ Journal of Marine Science and Engineering, vol. 9, no. 11, pp. 1-20, Nov. 2021. doi:10.3390/jmse9111314. Open DOISearch in Google Scholar

30. S.J. Yoo and B.S. Park, ‘Guaranteed-connectivity-based distributed robust event-triggered tracking of multiple underactuated surface vessels with uncertain nonlinear dynamics,’ Nonlinear Dynamics, vol. 99, no. 3, pp. 2233-2249, Feb. 2020. doi:10.1007/s11071-019-05432-5. Open DOISearch in Google Scholar

31. B.S. Park and S.J. Yoo, ‘Connectivity-maintaining and collision-avoiding performance function approach for robust leader–follower formation control of multiple uncertain underactuated surface vessels,’ Automatica, vol. 127, pp. 1-10, May. 2021. doi:10.1016/j.automatica.2021.109501. Open DOISearch in Google Scholar

32. H.C. Lamraoui and Q.D. Zhu, ‘Path following control of fully actuated Autonomous underwater vehicle based on LADRC,’ Polish Maritime Research, vol. 25, no. 4, pp. 39-48, Dec. 2018. doi:10.2478/pomr-2018-0130. Open DOISearch in Google Scholar

33. M. Tomera and K. Podgorski, ‘Control of dynamic positioning system with disturbance observer for autonomous marine surface vessels,’ Sensors, vol. 21, no. 20, pp. 1-24, Oct. 2021. doi.org/10.3390/s21206723. Open DOISearch in Google Scholar

34. T. Perez and T.I. Fossen, ‘Kinematic models for maneuvering and sea keeping of marine vessels,’ Modeling, Identification and Control, vol. 28, no. 1, pp. 19-30, Jan. 2007. doi: 10.4173/mic.2007.1.3. Open DOISearch in Google Scholar

35. W.H. Chen, ‘Disturbance observer based control for nonlinear systems,’ IEEE-ASME Transactions on Mechatronics, vol. 9, no. 4, pp. 706-710, Dec. 2004. doi:10.1109/TMECH.2004.839034. Open DOISearch in Google Scholar

36. J.Q. Han, ‘From PID to active disturbance rejection control,’ IEEE Transactions on Industrial Electronics, vol. 56, no. 3, pp. 900-906, Mar. 2009. doi:10.1109/TIE.2008.2011621. Open DOISearch in Google Scholar

37. K.D. Do and J. Pan, ‘Global robust adaptive path following of underactuated ships,’ Automatic, vol. 42, no. 10, pp. 1713-1722, Oct. 2006. doi:10.1016/j.automatica.2006.04.026. Open DOISearch in Google Scholar

eISSN:
2083-7429
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences