Accesso libero

Evaluation of Fatty Acid Composition in Amaranth Pasta Developed for a Vegan Diet

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Alessandrini, R., He, F.J., Ma, Y., Scrutinio, V., Wald, D.S., & MacGregor, G.A. (2021). Potential impact of gradual reduction of fat content in manufactured and out-of-home food on obesity in the United Kingdom: a modelling study. Am. J. Clin. Nutr. 113, 1312–1321. https://doi.org/10.1093/ajcn/nqaa396Search in Google Scholar

Alvarez-Jubete, L., Arendt, E.K., & Gallagher E. (2009). Nutritive value and chemical composition of pseudocereals as gluten-free ingredients. Int J Food Sci Nutr. 60, 240-257. DOI: 10.1080/09637480902950597Search in Google Scholar

Beitane, I. & Marisheva, A. (2023). The Potential of Amaranth as a Basic Raw Material for the Production of Pasta for a Vegan Diet. Appl Sci. 13, 3944. https://doi.org/10.3390/app13063944Search in Google Scholar

Bello-Pérez, L.A., Cabello-Vazquez, J.A., Carmona-Garcia, R., Patiño-Rodriguez, O., & Alvarez-Ramirez, J. (2022). Preparation of Functional Pasta Supplemented with Amaranth Pregelatinized Extruded Flour. Front Food Sci Technol. 2, 881714. DOI: 10.3389/frfst.2022.881714.Search in Google Scholar

Carpentieri, S., Larrea-Wachtendorff, D., Donsi, F., & Ferrari, G. (2022). Functionalization of pasta through the incorporation of bioactive compounds from agri-food by-products: Fundamentals, opportunities, and drawbacks. Trends Food Sci. Technol. 122, 49-65. DOI: 10.1016/j.tifs.2022.02.011.Search in Google Scholar

Chen, J. & Lui, H. (2020). Nutritional indices for assessing fatty acids: A mini review. Int. J. Mol. Sci. 21, 5695. DOI: 0.3390/ijms21165695.Search in Google Scholar

Culetu, A., Susman, I.E., Duta, D.E., & Belc, N. (2021). Nutritional and functional properties of gluten-free flours. Appl. Sci. 11, 6283. DOI: 10.3390/app11146283Search in Google Scholar

Currenti, W., Godos, J., Alanazi, A.M., Grosso, G., Cincione, R.I., La Vignera, S., Buscemi, S., & Galvano, F. (2022). Dietary Fats and Cardio-Metabolic Outcomes in a Cohort of Italian Adults. Nutrients 14, 4294. DOI: 10.3390/nu14204294.Search in Google Scholar

Czerwonka, M. & Białek, A. (2023). Fatty Acid Composition of Pseudocereals and Seeds Used as Functional Food Ingredients. Life 13, 217. https://doi.org/10.3390/life13010217Search in Google Scholar

Dyner, L, Drago S.R., Piñeiro, A, Sánchez H., González, R., Villaamil, E. & Valencia, M.E. (2007) Composition and potential contribution of iron, calcium and zinc of bread and pasta made with wheat and amaranth flours. Arch Latinoam Nutr. 57(1), 69-77.Search in Google Scholar

EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA); Scientific Opinion on Dietary Reference Values for fats, including saturated fatty acids, polyunsaturated fatty acids, monounsaturated fatty acids, trans fatty acids, and cholesterol. EFSA Journal 2010 8(3):1461. [107 pp.]. DOI:10.2903/j.efsa.2010.1461.Search in Google Scholar

Hooper, L., Martin, N., Jimoh, O.F., Kirk, C., Foster, E., & Abdelhamid, A.S. (2020). Reduction in saturated fat intake for cardiovascular disease. Cochrane Database Syst. Rev. 8, CD011737. DOI: 10.1002/14651858.CD011737.pub2.Search in Google Scholar

Huang, T., Yang, B., Zheng, J., Li, G., Wahlqvist, M.I., & Li, D. (2012). Cardiovascular disease mortality and cancer incidence in vegetarians: a meta-analysis and systematic review. Ann. Nutr. Metab. 60, 233-240. DOI: 10.1159/000337301.Search in Google Scholar

Kalnina, S., Rakcejeva, T., Kunkulberga, D., & Galoburda, R. (2015). Rheological properties of whole wheat and whole triticale flour blends for pasta production. Agronomy Research, 13(4), 948–955.Search in Google Scholar

Kouřimská, L., Sabolová, M., Horčička, P., Rys, S., & Božik, M. (2018). Lipid content, fatty acid profile, and nutritional value of new oat cultivars. J Cereal Sci. 84, 44-48. https://doi.org/10.1016/j.jcs.2018.09.012Search in Google Scholar

Kraujalis, P.K. & Venskutonis, P.R. (2013). Supercritical carbon dioxide extraction of squalene and tocopherols from amaranth and assessment of extracts antioxidant activity. J. Supercrit. Fluids 80, 78-85. DOI: 10.1016/j.supflu.2013.04.005.Search in Google Scholar

Lawal, O.M., Stuijvenberg, L., Boon, N., Awolu, O., Fogliano, V., & Linnemann, A.R. (2021). Technological and nutritional properties of amaranth-fortified yellow cassava pasta. J. Food Sci. 86, 5213-5225. https://doi.org/10.1111/1750-3841.15975Search in Google Scholar

Lignicka, I., Graci (Balgalve), A., & Zīdere-Laizāne, A.M. (2022). Nutritious lentil and rice meal for sustainable vegan and pescatarian diet. Agronomy Research 20(1), 229-234. DOI: 10.15159/AR.22.021.Search in Google Scholar

Maggio, A. & Orecchio, S. (2018). Fatty acid composition of gluten-free food (bakery products) for celiac people. Foods 7, 95. DOI: 10.3390/foods7060095.Search in Google Scholar

Martinez-Villaluenga, C., Penas, E., & Hernandez-Ledesma, B. (2020). Pseudocereal grains: Nutritional value, health benefits and current applications for the development of gluten-free foods. Food Chem. Toxicol. 137, 111178. DOI: 10.1016/j.fct.2020.111178.Search in Google Scholar

Ogrodowska, D., Zadernowski, R., Czaplicki, S., Derewiaka, D., & Wronowska, B. (2014). Amaranth seeds and products – the source of bioactive compounds. Pol. J. Food Nutr. Sci. 64 (3), 165-170. DOI: 10.2478/v10222-012-0095-zSearch in Google Scholar

Radenkovs, V., Juhnevica-Radenkova, K., Kviesis, J., Lazdina, D., Valdovska, A., Vallejo, F., & Lacis, G. (2021). Lignocellulose-Degrading Enzymes: A Biotechnology Platform for Ferulic Acid Production from Agro-Industrial Side Streams. Foods 10, 3056. https://doi.org/10.3390/foods10123056Search in Google Scholar

Rosell, M., Appleby, P., Spencer, E., & Key, T. (2006). Weight gain over 5 years in 21966 meat-ating, fish-eating, vegetarian, and vegan men and women in EPIC-Oxford. Int. J. Obes. 30, 1389–1396. DOI: 10.1038/sj.ijo.0803305.Search in Google Scholar

Santos, J.L., Santos, J.K., Santos, E.F., Sanches F.L.F.Z., Manhani, M.R., & Novello, D. (2014). Sensorial and physicochemical qualities of pasta prepared with amaranth. Acta Scientiarum. Health Science 37 (1), 69-75. DOI: 10.4025/actascihealthsci.v37i1.19592.Search in Google Scholar

Sayed-Ahmad, B., Urrutigoïty, M., Hijazi, A., Saad, Z., Cerny, M., Evon, P., Talou, T., & Merah, O. (2022). Amaranth oilseed composition and cosmetic applications. Separations 9, 181. DOI: 10.3390/separations9070181.Search in Google Scholar

Simonato, B., Trevisan, S., Tolve, R., Favati, F., & Pasini, G. (2019). Pasta fortification with olive pomace: Effects on the technological characteristics and nutritional properties. LWT – Food Sci. Technol. 114, 108368. DOI: 10.1016/j.lwt.2019.108368.Search in Google Scholar

Sobiecki, J.G., Appleby, P.N., Bradbury, K.E., & Key, T.J. (2016). High compliance with dietary recommendations in a cohort of meat eaters, fish eaters, vegetarians, and vegans: results from European Prospective Investigation into Cancer and Nutrition-Oxford study. Nutr. Res. 36, 464–477. https://doi.org/10.1016/j.nutres.2015.12.016Search in Google Scholar

Spanova, M. & Daum, G. (2011). Squalene – biochemistry, molecular biology, process biotechnology, and applications. Eur. J. Lipid Sci. Technol. 113, 1299-1320. DOI: 10.1002/ejlt.201100203.Search in Google Scholar

Sreerama, Y.N., Sashikala, V.B., Pratape, V.M., & Singh, V. (2012). Nutrients and antinutrients in cowpea and horse gram flours in comparison to chickpea flour: Evaluation of their flour functionality. Food Chem. 95, 615-624. DOI: 10.1016/j.foodchem.2011.09.008.Search in Google Scholar

Szabóová, M., Záhorský, M., Gažo, J., Geuens, J., Vermoesen, A., D’Hondt, E., & Hricová, A. (2020). Differences in seed weight, amino acid, fatty acid, oil, and squalene content in γ-irradiation-developed and commercial amaranth varieties (Amaranthus spp.). Plants 9, 1412. DOI: 10.3390/plants9111412.Search in Google Scholar

Tang, Y., Li, X., Chen, P.X., Zhang, B., Liu, R., Hernandez, M., … Tsao, R. (2016). Assessing the fatty acid, carotenoid, and tocopherol compositions of amaranth and quinoa seeds grown in Ontario and their overall contribution to nutritional quality. J. Agric. Food Chem. 10; 64(5), 1103–1110. DOI: 10.1021/acs.jafc.5b05414.Search in Google Scholar

Vegan Food Market Size, Share & COVID-19 Impact Analysis, Product Type (Vegan Meat, Vegan Milk, and Others), Distribution Channel (Supermarkets/Hypermarkets, Convenience Stores, Online Retails, and Others), and Regional Forecast, 2021–2028. Retrieved March 6, 2023, from https://www.fortunebusinessinsights.com/vegan-food-market-106421Search in Google Scholar

eISSN:
2256-0939
Lingua:
Inglese
Frequenza di pubblicazione:
2 volte all'anno
Argomenti della rivista:
Life Sciences, Biotechnology, Ecology, Plant Science