1. bookVolume 48 (2022): Edizione 343 (December 2022)
Dettagli della rivista
Prima pubblicazione
30 Aug 2012
Frequenza di pubblicazione
2 volte all'anno
Accesso libero

Screening of Venturia inaequalis virulence and resistance of Malus genotypes to apple scab using in vitro methodology

Pubblicato online: 05 Jan 2023
Volume & Edizione: Volume 48 (2022) - Edizione 343 (December 2022)
Pagine: 79 - 90
Ricevuto: 29 Oct 2022
Accettato: 29 Nov 2022
Dettagli della rivista
Prima pubblicazione
30 Aug 2012
Frequenza di pubblicazione
2 volte all'anno

Beloshapkina, O. O., Kumakhova, T. Kh., & Wakhsheh, N. N. (2014). Immunological assessment of apple varieties in terms of their scab resistance in relation to leaf and fruit microstructure. Izvestiya of Timiryazev Agricultural Academy, 4, 52–62. Search in Google Scholar

Bénaouf, G., & Parisi, L. (1998). Characterization of Venturia inaequalis pathogenicity on leaf discs of apple trees. European Journal of Plant Pathology, 104, 785–793. DOI:10.1023/A:1008616728248.10.1023/A:1008616728248 Search in Google Scholar

Bénaouf, G., & Parisi, L. (2000). Genetics of the host – pathogen relationship between Venturia inaequalis races 6 and 7 and Malus species. Phytopathology, 90, 236–242. DOI: 10.1094/PHYTO.2000. Search in Google Scholar

Beresford, R. M., & Manktelow, D. W. L. (1994). Economics of reducing fungicide use by weather-based disease for ecasts for control of Venturia inaequalis in apples. New Zealand Journal of Crop and Horticultural Science, 22, 113–120. DOI: 10.1080/01140671.1994.9513814.10.1080/01140671.1994.9513814 Search in Google Scholar

Biggs, A. R., & Stensvand, A. (2014). Apple scab. In Sutton, T. B., Alswinckle, H. S., Agnello, A. M. and Walgenbach, J. F. (Eds.), Compendium of Apple and Pear Diseases and Pests (pp. 8–11). T.B. St. Paul, MN, USA: APS Press. Search in Google Scholar

Bowen, J. K., Mesarich, C. H., Bus, V. G. M., Beresford, R. M., Plummer, K., & Templeton, M. D. (2011). Venturia inaequalis : the causal agent of apple scab. Molecular Plant Pathology, 12, 105–122. DOI: 10.1111/j.1364-3703.2010.00656.x.10.1111/j.1364-3703.2010.00656.x664035021199562 Search in Google Scholar

Bus, V. G. M., Rikkerink, E. H. A., Caffier, V., Durel, C. E., & Plummer, K. M. (2011). Revision of the nomenclature of the differential host – pathogen interactions of Venturia inaequalis and Malus. Annual Review of Phytopathology, 49, 391–413. DOI: 10.1146/annurev-phyto-072910-095339.10.1146/annurev-phyto-072910-09533921599495 Search in Google Scholar

Caffier, V., Le Cam, B., Expert, P., Tellier, M., Devaux, M., Giraud, M., & Chevalier, M. (2012). A new scab-like disease on apple caused by the formerly saprotrophic fungus Venturia asperata. Plant Pathology, 61, 915–924. DOI: 10.1111/j.1365-3059.2011.02583.x.10.1111/j.1365-3059.2011.02583.x Search in Google Scholar

Caffier, V., Patocci, A., Expert, P., Bellanger, M-N., Durel, C-E., Hilber-Bodmer, M., Broggini, G. A. L., Groenwold, R., & Bus, V. G. M. (2015). Virulence characterization of Venturia inaequalis reference isolates on the differential set of Malus hosts. Plant Disease, 99, 370–375. DOI: 10.1094/PDIS-07-14-0708-RE.10.1094/PDIS-07-14-0708-RE30699702 Search in Google Scholar

Chevalier, M., Lespinasse, Y., & Renaudin, S. (1991). A microscopic study of the different classes of symptoms coded by the Vf gene in apple for resistance to scab (Venturia inaequalis). Plant Pathology, 40, 249–256. DOI: 10.1111/j.1365-3059.1991.tb02374.x.10.1111/j.1365-3059.1991.tb02374.x Search in Google Scholar

Chevalier, M., Tellier, M., Lespinasse, Y., Bruyninckx, M., & Georgeault, S. (2008). Behaviour Studies of New Strains of Venturia pirina Isolated from ‘Conference’ Cultivar on a Range of Pear Cultivars. In Proceedings of the Xth International Pear Symposium, 22–26 May 2007 (pp. 817–823). Peniche, Portugal.10.17660/ActaHortic.2008.800.111 Search in Google Scholar

Chevalier, M., Bernard, C., Tellier, M., Lespinasse, Y., Filmond, R., & Lezec, M. (2004). Variability in the reaction of several pear Pyrus communis cultivars to different inocula of Venturia pirina. Acta Horticulturae, 663, 177–181. DOI: 10.17660/ActaHortic.2004.663.25.10.17660/ActaHortic.2004.663.25 Search in Google Scholar

Demeyere, A., & De Turck, R. (2002). Utilisation des produitsphytopharmaceutiquesdans les principales cultures enBelgiquedurant la décennie 1991 – 2000. Ministère des Classes Moyenneset de l’Agriculture, Bruxelles, Belgium. Search in Google Scholar

Didelot, F., Brun, L., & Parisi, L. (2007). Effects of cultivar mixtures on scab control in apple orchards. Plant Pathology, 56, 1014–1022. DOI: 10.1111/j.1365-3059.2007.01695.x.10.1111/j.1365-3059.2007.01695.x Search in Google Scholar

Francl, L. J. (2001). The Disease Triangle: A plant pathological paradigm revisited. The Plant Health Instructor. National Agricultural Library: Beltsville, MD, USA. DOI: 10.1094/PHI-T-2001-0517-01.10.1094/PHI-T-2001-0517-01 Search in Google Scholar

Gelvonauskienė, D., Šikšnianienė, J., Rugienius, R., Gelvonauskis, B., Šikšnianas, T., Stanys, V., Stanienė, G., Sasnauskas, A., & Vinskienė, J. (2005). Polyphenoloxidase isozyme and Vfa1 sequence specific markers in apple cultivars differing in scab resistance. Biologija, 3, 59–61. Search in Google Scholar

Gessler, C., & Stumm, D. (1984). Infection and stroma formation by Venturia inaequalis on apple leaves with different degrees of susceptibility to scab. Journal of Phytopathology, 110, 119–126.10.1111/j.1439-0434.1984.tb03399.x Search in Google Scholar

Gottleb, D. (1950). The physiology of spore germination in fungi. The Botanical Review, 16(5), 229–257.10.1007/BF02873609 Search in Google Scholar

Grantiņa-Ieviņa, L., Rancāne, R., Jakobija, I., & Ērgle, G. (2015). Ābeļu kraupja izplatība uz plašāk audzētajām ābeļu šķirnēm dažādos Latvijas reģionos. Rakstu krājums Vecauce – 2015: Lauksaimniecības Zinātne Reorganizācijas Laikā. LLU, 25–28. (in Latvian). Search in Google Scholar

Guérin, F., Franck, P., Loiseau, A., Devaux, M., & Le Cam, B. (2004). Isolation of 21 new polymorphic microsatellite loci in the phytopathogenic fungus Venturia inaequalis. Molecular Ecology Notes, 4(2), 268–270. DOI: 10.1111/j.1471-8286.2004.00637.x.10.1111/j.1471-8286.2004.00637.x Search in Google Scholar

Hancock, J. F., Luby, J. J., Brown, S. K., & Lobos, G. A. (2008). Apples. In Hancock, J. F. (Eds.), Temperate Fruit Crop Breeding: Germplasm to Genomics (pp. 1–38). Dordrecht: Springer Netherlands. Search in Google Scholar

Holb, I. J. (2006). Effect of six sanitation treatments on leaf litter density, ascospore production of Venturia inaequalis and scab incidence in integrated and organic apple orchards. European Journal of Plant Pathology, 115 (3), 293–307. DOI: 10.1007/s10658-006-9013-8.10.1007/s10658-006-9013-8 Search in Google Scholar

Holb, I. J. (2009). Fungal disease management in environmentally friendly apple production – a review. In Lichtfouse, E. (Eds.), Sustainable Agriculture Reviews 2: Climate Change, Intercropping, Pest Control and Beneficial Microorganisms (pp. 219–293). Springer Science, New York. DOI: 10.1007/978-90-481-2716-0_10.10.1007/978-90-481-2716-0_10 Search in Google Scholar

Höfer, M., Flachowsky, H., Schröpfer, S., & Peil, A. (2021). Evaluation of scaband mildew resistance in the Gene Bank collection of apples in Dresden-Pillnitz. Plants (Basel, Switzerland), 10(6), 1227. DOI: 10.3390/plants10061227.10.3390/plants10061227823424534208651 Search in Google Scholar

Ikase, L., Feldmane, D., Rubauskis, E., Skrīvele, M., Strautiņa, S., Drudze, I., Grāvīte, I., Juhņēviča-Radenkova, K., Kalniņa, I., Kaufmane, E., Krasnova, I., Lāce, B., Lācis, G., Moročko-Bičevska, I., Pole, V., Ruisa, S., Segliņa, D., Dēķena, D., Dimza, I., Laugale, V., Lepse, L., Lepsis, J., Āboliņš, M., Liepniece, M., Šterne, D., Tikuma, B., Brūvelis, A., Osvalde, A., Vēsmiņš, G., & Timbare, R. (2015). Augļkopība. LV, Augļkopības Institūts, 567.lpp. (in Latvian). Search in Google Scholar

Ikase, L., Drudze, I., & Lācis, G. (2022). Current achievements of the Latvian apple breeding program. Proceedings of the Latvian Academy of Sciences, Section B. Natural, Exact, and Applied Sciences, 76 (4), 424–431. DOI: 10.2478/prolas-2022-0066.10.2478/prolas-2022-0066 Search in Google Scholar

Yepes, L. M., & Aldwinckle, H. S. (1993a). Search in Google Scholar

Pathogenesis of Venturia inaequalis on shoot-tip cultures and on greenhouse-grown apple cultivars. Phytopathology, 83, 1155–1162.10.1094/Phyto-83-1155 Search in Google Scholar

Yepes, L. M., & Aldwinckle, H. S. (1993b). Selection of resistance to Venturia inaequalis using detached leaves from in vitro–grown apple shoots. Plant Science, 93, 216–221. DOI: 10.1016/0168-9452(93)90051-Z.10.1016/0168-9452(93)90051-Z Search in Google Scholar

Kaufmane, E., Skrivele, M., Rubauskis, E., Strautiņa, S., Ikase, L., Lacis, G., & Priekule, I. (2013). Development of fruit science in Latvia. Proceedings of the Latvian Academy of Sciences, Section B: Natural, Exact, and Applied Sciences, 67, 71–83.10.2478/prolas-2013-0013 Search in Google Scholar

Keitt, G. W., & Jones, L. K. (1926). Studies of the epidemiology and control of apple scab. Research bulletin - Agricultural Experiment Station, University of Wisconsin, 73, 1–104. Search in Google Scholar

Lê Van, A., Durel, C. E., Le Cam, B., & Caffier, V. (2011). The threat of wild habitat to scab resistant apple cultivars. Plant Pathology, 60(4), 621–630. DOI: 10.1111/j.1365-3059.2011.02437.x.10.1111/j.1365-3059.2011.02437.x Search in Google Scholar

MacHardy, W. E. (1996). Apple scab: biology, epidemiology, and management. American Phytopathological Society (APS Press), St. Paul, Minnesota, p. 545. Search in Google Scholar

MacHardy, W. E., & Jeger, M. J. (1983). Integrating control measuresfor the management of primary apple scab, Venturia inaequalis (Cke.). Wint. Protection Ecology, 5, 103–125. Search in Google Scholar

MacHardy, W. E., & Gadoury, D. M. (1989). A revision of Mills’s criteria for predicting apple scab infection periods. Phytopathology, 79, 304–310.10.1094/Phyto-79-304 Search in Google Scholar

McDonald, B. A., & Linde, C. (2002). Pathogen population genetics, evolutionary potential, and durable resistance. Annual Review Phytopathology, 40, 349–79. DOI: 10.1146/annurev.phyto.40.120501.101443.10.1146/annurev.phyto.40.120501.10144312147764 Search in Google Scholar

Martìnez-Bilbao, A., Ortiz-Barredo, A., Montesinos, E., & Murillo, J. (2012). Venturia inaequalis resistance in local Spanish cider apple germplasm under controlled and field conditions. Euphytica, 188, p. 273–283. DOI: 10.1007/s10681-012-0723-z.10.1007/s10681-012-0723-z Search in Google Scholar

Melounová, M., Vejl, P., Sedlák, P., Reznerová, A., Tesařová, M., Blažek, J., & Zoufalá, J. (2004). The variability of Venturia inaequalis CKE. races in the Czech Republic and the accumulation of resistance genes in apple germplasm. Plant Soil Environ, 50, 416–423. DOI: 10.17221/4053-PSE.10.17221/4053-PSE Search in Google Scholar

Meier, U. (2001). Growth stages of mono-and dicotyledonous plants: BBCH Monograph. Retrieved September 10, 2021, from https://www.politicheagricole.it/flex/AppData/WebLive/Agrometeo/MIEPFY800/BBCHengl2001.pdf. Search in Google Scholar

O’Rourke, D (2003). World production, trade, consumption and economic outlook for apples. In Ferree, D. C., & Warrington, I. (Eds.), Apples: Botany, Production and Uses (pp. 15–29). CAB International, Wallingford, UK. Search in Google Scholar

Patocchi, A.,Wehrli, A., Dubuis, P.-H., Auwerkerken, A., Leida, C., Cipriani, G., Passey, T., Staples, M., Didelot, F., Philion, V., Peil, A., Laszakovits, H., Rühmer, T., Boeck, K., Baniulis, D., Strasser, K., Vávra, R., Guerra, W., Masny, S., Ruess, F., LeBerre, F., Nybom, H., Tartarini, S., Spornberger, A., Pikunova, A., & Bus, V. G. M. (2020). Ten years of VINQUEST: First insight for breeding new apple cultivars with durable apple scab resistance. Plant Disease, 104, 2074–2081. DOI: 10.17660/ActaHortic.2021.1307.48.10.17660/ActaHortic.2021.1307.48 Search in Google Scholar

Pétriacq, P., Stassen, J. H., & Ton, J. (2016). Spore Density Determines Infection Strategy by the Plant Pathogenic Fungus Plectosphaerella cucumerina. Plant Physiology, 170(4), 2325–2339. DOI: 10.1104/pp.15.00551.10.1104/pp.15.00551482514826842622 Search in Google Scholar

Pierantoni, L., Dondini, L., Cho, K.-H., Shin, I.-S., Gennari, F., Chiodini, R., Tartarini, S., Kang, S. J., & Sansavini, S. (2007). Pear scab resistance QTLs via a European pear (Pyrus communis) linkage map. Tree Genetics and Genomes, 3, 311–317. DOI: 10.1007/s11295-006-0070-0.10.1007/s11295-006-0070-0 Search in Google Scholar

Rancane, R., Eihe, M., & Jankovska, L. (2008). Adaption of simulation model RIMPRO for primary apple scab control in Latvia. Acta Horticulturae, 803, 69–76. DOI: 10.17660/ActaHortic.2008.803.7.10.17660/ActaHortic.2008.803.7 Search in Google Scholar

Rancane, R., Vilka, L., & Bankina, B. (2013). Urea application as a sanitation practice to manage pear scab. In Research for Rural Development 2013: annual 19th international scientific conference proceedings, 15−17 May 2013 (pp. 13−17). Jelgava (Latvia): Latvia University of Agriculture. Search in Google Scholar

Rossi, V., Giogue, S., & Bugiani, R. (2007). A-scab (Apple scab), a simulation model for estimating risk of Venturia inaequalis primary infections. IOBC-WPRS Bull., 37, 300–308. DOI: 10.1111/j.1365-2338.2007.01125.x.10.1111/j.1365-2338.2007.01125.x Search in Google Scholar

Sandskär B., & Liljeroth E. (2005). Incidence of races of the apple scab pathogen (Venturia inaequalis) in apple growing districts in Sweden. ActaAgricScand Sect BPlant Soil Science, 55(2), 143–150. DOI: 10.1080/09064710510029042.10.1080/09064710510029042 Search in Google Scholar

Schubert, K., Ritschel, A., & Braun, U. (2003). A monograph of Fusicladium s. lat. (Hyphomycetes). Schlechtendalia, 9, 1–132. Search in Google Scholar

Schwabe, W. F. S. (1980). Wetting and temperature requirements for apple leaf infection by Venturia inaequalis in South Africa. Phytophylactica, 12, 69–80. Search in Google Scholar

Sivanesan, A. (1977). The Taxonomy and Pathology of Venturia Species. J. Cramer, Vaduz., Liechtenstein. 94–99. Search in Google Scholar

Sokolova, O., & Moročko-Bičevska, I. (2021). Evaluation of Venturia pyrina virulence on European pear (Pyrus communis) cultivars by an in vitro methodology. Journal of Phytopathology, 169, 461–470. DOI: 10.1111/jph.13002.10.1111/jph.13002 Search in Google Scholar

Sokolova, O., & Moročko-Bičevska, I. (2022). Evaluation of apple scab and occurrence of Venturia inaequalis races on differential Malus genotypes in Latvia. Proceedings of the Latvian Academy of Sciences, Section B. Natural, Exact, and Applied Sciences, 76 (4), 488–494. DOI: 10.2478/prolas-2022-0075.10.2478/prolas-2022-0075 Search in Google Scholar

Soriano, J. M., Joshi, S. G., Van Kaauwen, M., Noordijk, Y., Groenwold, R., Henken, B., Van de Weg, W. E., & Schouten, H. J. (2009). Identification and mapping of the novel apple scab resistance gene Vd 3. Tree Genetics & Genomes, 5, 475–482. DOI: 10.1007/s11295-009-0201-5.10.1007/s11295-009-0201-5 Search in Google Scholar

Stehmann, C., Pennycook S., & Plummer, K. M. (2001). Molecular identification of a sexual interloper: the pear pathogen, Venturia pirina, has sex on apple. Phytopathology, 91, 633–641. DOI: 10.1094/PHYTO.2001.91.7.633.10.1094/PHYTO.2001.91.7.63318942992 Search in Google Scholar

Univer, T. (1999). Resistance of apple varieties and seedlings to apple scab in Estonia. Transactions of the Estonian Academic Agricultural Society, 9, 101–104. Search in Google Scholar

Urbanovich, O., & Kazlovskaya, Z. (2008). Identification of scab resistance genes in apple trees by molecular markers. Sodininkyste ir Daržininkyste, 27, 347–357. Search in Google Scholar

Xu, X. M., & Robinson, J. (2005). Modelling the effects of wetness duration and fruit maturity on infection of apple fruits of Cox’s Orange Pippin and two clones of Gala by Venturia inaequalis. Plant Pathology, 54, 347–356. DOI: 10.1111/j.1365-3059.2005.01177.x.10.1111/j.1365-3059.2005.01177.x Search in Google Scholar

Zelmene, K., Kārkliņa, K., Ikase, L., & Lācis, G. (2022). Inheritance of apple (Malus x domestica (L.) Borkh) resistance against apple scab (Venturia inaequalis (Cooke) Wint.) in hybrid breeding material obtained by gene pyramiding. Horticulturae, 8, 772. DOI: 10.3390/horticulturae8090772.10.3390/horticulturae8090772 Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo