[
Beloshapkina, O. O., Kumakhova, T. Kh., & Wakhsheh, N. N. (2014). Immunological assessment of apple varieties in terms of their scab resistance in relation to leaf and fruit microstructure. Izvestiya of Timiryazev Agricultural Academy, 4, 52–62.
]Search in Google Scholar
[
Bénaouf, G., & Parisi, L. (1998). Characterization of Venturia inaequalis pathogenicity on leaf discs of apple trees. European Journal of Plant Pathology, 104, 785–793. DOI:10.1023/A:1008616728248.10.1023/A:1008616728248
]Search in Google Scholar
[
Bénaouf, G., & Parisi, L. (2000). Genetics of the host – pathogen relationship between Venturia inaequalis races 6 and 7 and Malus species. Phytopathology, 90, 236–242. DOI: 10.1094/PHYTO.2000.90.3.236.10.1094/PHYTO.2000.90.3.23618944614
]Search in Google Scholar
[
Beresford, R. M., & Manktelow, D. W. L. (1994). Economics of reducing fungicide use by weather-based disease for ecasts for control of Venturia inaequalis in apples. New Zealand Journal of Crop and Horticultural Science, 22, 113–120. DOI: 10.1080/01140671.1994.9513814.10.1080/01140671.1994.9513814
]Search in Google Scholar
[
Biggs, A. R., & Stensvand, A. (2014). Apple scab. In Sutton, T. B., Alswinckle, H. S., Agnello, A. M. and Walgenbach, J. F. (Eds.), Compendium of Apple and Pear Diseases and Pests (pp. 8–11). T.B. St. Paul, MN, USA: APS Press.
]Search in Google Scholar
[
Bowen, J. K., Mesarich, C. H., Bus, V. G. M., Beresford, R. M., Plummer, K., & Templeton, M. D. (2011). Venturia inaequalis : the causal agent of apple scab. Molecular Plant Pathology, 12, 105–122. DOI: 10.1111/j.1364-3703.2010.00656.x.10.1111/j.1364-3703.2010.00656.x664035021199562
]Search in Google Scholar
[
Bus, V. G. M., Rikkerink, E. H. A., Caffier, V., Durel, C. E., & Plummer, K. M. (2011). Revision of the nomenclature of the differential host – pathogen interactions of Venturia inaequalis and Malus. Annual Review of Phytopathology, 49, 391–413. DOI: 10.1146/annurev-phyto-072910-095339.10.1146/annurev-phyto-072910-09533921599495
]Search in Google Scholar
[
Caffier, V., Le Cam, B., Expert, P., Tellier, M., Devaux, M., Giraud, M., & Chevalier, M. (2012). A new scab-like disease on apple caused by the formerly saprotrophic fungus Venturia asperata. Plant Pathology, 61, 915–924. DOI: 10.1111/j.1365-3059.2011.02583.x.10.1111/j.1365-3059.2011.02583.x
]Search in Google Scholar
[
Caffier, V., Patocci, A., Expert, P., Bellanger, M-N., Durel, C-E., Hilber-Bodmer, M., Broggini, G. A. L., Groenwold, R., & Bus, V. G. M. (2015). Virulence characterization of Venturia inaequalis reference isolates on the differential set of Malus hosts. Plant Disease, 99, 370–375. DOI: 10.1094/PDIS-07-14-0708-RE.10.1094/PDIS-07-14-0708-RE30699702
]Search in Google Scholar
[
Chevalier, M., Lespinasse, Y., & Renaudin, S. (1991). A microscopic study of the different classes of symptoms coded by the Vf gene in apple for resistance to scab (Venturia inaequalis). Plant Pathology, 40, 249–256. DOI: 10.1111/j.1365-3059.1991.tb02374.x.10.1111/j.1365-3059.1991.tb02374.x
]Search in Google Scholar
[
Chevalier, M., Tellier, M., Lespinasse, Y., Bruyninckx, M., & Georgeault, S. (2008). Behaviour Studies of New Strains of Venturia pirina Isolated from ‘Conference’ Cultivar on a Range of Pear Cultivars. In Proceedings of the Xth International Pear Symposium, 22–26 May 2007 (pp. 817–823). Peniche, Portugal.10.17660/ActaHortic.2008.800.111
]Search in Google Scholar
[
Chevalier, M., Bernard, C., Tellier, M., Lespinasse, Y., Filmond, R., & Lezec, M. (2004). Variability in the reaction of several pear Pyrus communis cultivars to different inocula of Venturia pirina. Acta Horticulturae, 663, 177–181. DOI: 10.17660/ActaHortic.2004.663.25.10.17660/ActaHortic.2004.663.25
]Search in Google Scholar
[
Demeyere, A., & De Turck, R. (2002). Utilisation des produitsphytopharmaceutiquesdans les principales cultures enBelgiquedurant la décennie 1991 – 2000. Ministère des Classes Moyenneset de l’Agriculture, Bruxelles, Belgium.
]Search in Google Scholar
[
Didelot, F., Brun, L., & Parisi, L. (2007). Effects of cultivar mixtures on scab control in apple orchards. Plant Pathology, 56, 1014–1022. DOI: 10.1111/j.1365-3059.2007.01695.x.10.1111/j.1365-3059.2007.01695.x
]Search in Google Scholar
[
Francl, L. J. (2001). The Disease Triangle: A plant pathological paradigm revisited. The Plant Health Instructor. National Agricultural Library: Beltsville, MD, USA. DOI: 10.1094/PHI-T-2001-0517-01.10.1094/PHI-T-2001-0517-01
]Search in Google Scholar
[
Gelvonauskienė, D., Šikšnianienė, J., Rugienius, R., Gelvonauskis, B., Šikšnianas, T., Stanys, V., Stanienė, G., Sasnauskas, A., & Vinskienė, J. (2005). Polyphenoloxidase isozyme and Vfa1 sequence specific markers in apple cultivars differing in scab resistance. Biologija, 3, 59–61.
]Search in Google Scholar
[
Gessler, C., & Stumm, D. (1984). Infection and stroma formation by Venturia inaequalis on apple leaves with different degrees of susceptibility to scab. Journal of Phytopathology, 110, 119–126.10.1111/j.1439-0434.1984.tb03399.x
]Search in Google Scholar
[
Gottleb, D. (1950). The physiology of spore germination in fungi. The Botanical Review, 16(5), 229–257.10.1007/BF02873609
]Search in Google Scholar
[
Grantiņa-Ieviņa, L., Rancāne, R., Jakobija, I., & Ērgle, G. (2015). Ābeļu kraupja izplatība uz plašāk audzētajām ābeļu šķirnēm dažādos Latvijas reģionos. Rakstu krājums Vecauce – 2015: Lauksaimniecības Zinātne Reorganizācijas Laikā. LLU, 25–28. (in Latvian).
]Search in Google Scholar
[
Guérin, F., Franck, P., Loiseau, A., Devaux, M., & Le Cam, B. (2004). Isolation of 21 new polymorphic microsatellite loci in the phytopathogenic fungus Venturia inaequalis. Molecular Ecology Notes, 4(2), 268–270. DOI: 10.1111/j.1471-8286.2004.00637.x.10.1111/j.1471-8286.2004.00637.x
]Search in Google Scholar
[
Hancock, J. F., Luby, J. J., Brown, S. K., & Lobos, G. A. (2008). Apples. In Hancock, J. F. (Eds.), Temperate Fruit Crop Breeding: Germplasm to Genomics (pp. 1–38). Dordrecht: Springer Netherlands.
]Search in Google Scholar
[
Holb, I. J. (2006). Effect of six sanitation treatments on leaf litter density, ascospore production of Venturia inaequalis and scab incidence in integrated and organic apple orchards. European Journal of Plant Pathology, 115 (3), 293–307. DOI: 10.1007/s10658-006-9013-8.10.1007/s10658-006-9013-8
]Search in Google Scholar
[
Holb, I. J. (2009). Fungal disease management in environmentally friendly apple production – a review. In Lichtfouse, E. (Eds.), Sustainable Agriculture Reviews 2: Climate Change, Intercropping, Pest Control and Beneficial Microorganisms (pp. 219–293). Springer Science, New York. DOI: 10.1007/978-90-481-2716-0_10.10.1007/978-90-481-2716-0_10
]Search in Google Scholar
[
Höfer, M., Flachowsky, H., Schröpfer, S., & Peil, A. (2021). Evaluation of scaband mildew resistance in the Gene Bank collection of apples in Dresden-Pillnitz. Plants (Basel, Switzerland), 10(6), 1227. DOI: 10.3390/plants10061227.10.3390/plants10061227823424534208651
]Search in Google Scholar
[
Ikase, L., Feldmane, D., Rubauskis, E., Skrīvele, M., Strautiņa, S., Drudze, I., Grāvīte, I., Juhņēviča-Radenkova, K., Kalniņa, I., Kaufmane, E., Krasnova, I., Lāce, B., Lācis, G., Moročko-Bičevska, I., Pole, V., Ruisa, S., Segliņa, D., Dēķena, D., Dimza, I., Laugale, V., Lepse, L., Lepsis, J., Āboliņš, M., Liepniece, M., Šterne, D., Tikuma, B., Brūvelis, A., Osvalde, A., Vēsmiņš, G., & Timbare, R. (2015). Augļkopība. LV, Augļkopības Institūts, 567.lpp. (in Latvian).
]Search in Google Scholar
[
Ikase, L., Drudze, I., & Lācis, G. (2022). Current achievements of the Latvian apple breeding program. Proceedings of the Latvian Academy of Sciences, Section B. Natural, Exact, and Applied Sciences, 76 (4), 424–431. DOI: 10.2478/prolas-2022-0066.10.2478/prolas-2022-0066
]Search in Google Scholar
[
Yepes, L. M., & Aldwinckle, H. S. (1993a).
]Search in Google Scholar
[
Pathogenesis of Venturia inaequalis on shoot-tip cultures and on greenhouse-grown apple cultivars. Phytopathology, 83, 1155–1162.10.1094/Phyto-83-1155
]Search in Google Scholar
[
Yepes, L. M., & Aldwinckle, H. S. (1993b). Selection of resistance to Venturia inaequalis using detached leaves from in vitro–grown apple shoots. Plant Science, 93, 216–221. DOI: 10.1016/0168-9452(93)90051-Z.10.1016/0168-9452(93)90051-Z
]Search in Google Scholar
[
Kaufmane, E., Skrivele, M., Rubauskis, E., Strautiņa, S., Ikase, L., Lacis, G., & Priekule, I. (2013). Development of fruit science in Latvia. Proceedings of the Latvian Academy of Sciences, Section B: Natural, Exact, and Applied Sciences, 67, 71–83.10.2478/prolas-2013-0013
]Search in Google Scholar
[
Keitt, G. W., & Jones, L. K. (1926). Studies of the epidemiology and control of apple scab. Research bulletin - Agricultural Experiment Station, University of Wisconsin, 73, 1–104.
]Search in Google Scholar
[
Lê Van, A., Durel, C. E., Le Cam, B., & Caffier, V. (2011). The threat of wild habitat to scab resistant apple cultivars. Plant Pathology, 60(4), 621–630. DOI: 10.1111/j.1365-3059.2011.02437.x.10.1111/j.1365-3059.2011.02437.x
]Search in Google Scholar
[
MacHardy, W. E. (1996). Apple scab: biology, epidemiology, and management. American Phytopathological Society (APS Press), St. Paul, Minnesota, p. 545.
]Search in Google Scholar
[
MacHardy, W. E., & Jeger, M. J. (1983). Integrating control measuresfor the management of primary apple scab, Venturia inaequalis (Cke.). Wint. Protection Ecology, 5, 103–125.
]Search in Google Scholar
[
MacHardy, W. E., & Gadoury, D. M. (1989). A revision of Mills’s criteria for predicting apple scab infection periods. Phytopathology, 79, 304–310.10.1094/Phyto-79-304
]Search in Google Scholar
[
McDonald, B. A., & Linde, C. (2002). Pathogen population genetics, evolutionary potential, and durable resistance. Annual Review Phytopathology, 40, 349–79. DOI: 10.1146/annurev.phyto.40.120501.101443.10.1146/annurev.phyto.40.120501.10144312147764
]Search in Google Scholar
[
Martìnez-Bilbao, A., Ortiz-Barredo, A., Montesinos, E., & Murillo, J. (2012). Venturia inaequalis resistance in local Spanish cider apple germplasm under controlled and field conditions. Euphytica, 188, p. 273–283. DOI: 10.1007/s10681-012-0723-z.10.1007/s10681-012-0723-z
]Search in Google Scholar
[
Melounová, M., Vejl, P., Sedlák, P., Reznerová, A., Tesařová, M., Blažek, J., & Zoufalá, J. (2004). The variability of Venturia inaequalis CKE. races in the Czech Republic and the accumulation of resistance genes in apple germplasm. Plant Soil Environ, 50, 416–423. DOI: 10.17221/4053-PSE.10.17221/4053-PSE
]Search in Google Scholar
[
Meier, U. (2001). Growth stages of mono-and dicotyledonous plants: BBCH Monograph. Retrieved September 10, 2021, from https://www.politicheagricole.it/flex/AppData/WebLive/Agrometeo/MIEPFY800/BBCHengl2001.pdf.
]Search in Google Scholar
[
O’Rourke, D (2003). World production, trade, consumption and economic outlook for apples. In Ferree, D. C., & Warrington, I. (Eds.), Apples: Botany, Production and Uses (pp. 15–29). CAB International, Wallingford, UK.
]Search in Google Scholar
[
Patocchi, A.,Wehrli, A., Dubuis, P.-H., Auwerkerken, A., Leida, C., Cipriani, G., Passey, T., Staples, M., Didelot, F., Philion, V., Peil, A., Laszakovits, H., Rühmer, T., Boeck, K., Baniulis, D., Strasser, K., Vávra, R., Guerra, W., Masny, S., Ruess, F., LeBerre, F., Nybom, H., Tartarini, S., Spornberger, A., Pikunova, A., & Bus, V. G. M. (2020). Ten years of VINQUEST: First insight for breeding new apple cultivars with durable apple scab resistance. Plant Disease, 104, 2074–2081. DOI: 10.17660/ActaHortic.2021.1307.48.10.17660/ActaHortic.2021.1307.48
]Search in Google Scholar
[
Pétriacq, P., Stassen, J. H., & Ton, J. (2016). Spore Density Determines Infection Strategy by the Plant Pathogenic Fungus Plectosphaerella cucumerina. Plant Physiology, 170(4), 2325–2339. DOI: 10.1104/pp.15.00551.10.1104/pp.15.00551482514826842622
]Search in Google Scholar
[
Pierantoni, L., Dondini, L., Cho, K.-H., Shin, I.-S., Gennari, F., Chiodini, R., Tartarini, S., Kang, S. J., & Sansavini, S. (2007). Pear scab resistance QTLs via a European pear (Pyrus communis) linkage map. Tree Genetics and Genomes, 3, 311–317. DOI: 10.1007/s11295-006-0070-0.10.1007/s11295-006-0070-0
]Search in Google Scholar
[
Rancane, R., Eihe, M., & Jankovska, L. (2008). Adaption of simulation model RIMPRO for primary apple scab control in Latvia. Acta Horticulturae, 803, 69–76. DOI: 10.17660/ActaHortic.2008.803.7.10.17660/ActaHortic.2008.803.7
]Search in Google Scholar
[
Rancane, R., Vilka, L., & Bankina, B. (2013). Urea application as a sanitation practice to manage pear scab. In Research for Rural Development 2013: annual 19th international scientific conference proceedings, 15−17 May 2013 (pp. 13−17). Jelgava (Latvia): Latvia University of Agriculture.
]Search in Google Scholar
[
Rossi, V., Giogue, S., & Bugiani, R. (2007). A-scab (Apple scab), a simulation model for estimating risk of Venturia inaequalis primary infections. IOBC-WPRS Bull., 37, 300–308. DOI: 10.1111/j.1365-2338.2007.01125.x.10.1111/j.1365-2338.2007.01125.x
]Search in Google Scholar
[
Sandskär B., & Liljeroth E. (2005). Incidence of races of the apple scab pathogen (Venturia inaequalis) in apple growing districts in Sweden. ActaAgricScand Sect B – Plant Soil Science, 55(2), 143–150. DOI: 10.1080/09064710510029042.10.1080/09064710510029042
]Search in Google Scholar
[
Schubert, K., Ritschel, A., & Braun, U. (2003). A monograph of Fusicladium s. lat. (Hyphomycetes). Schlechtendalia, 9, 1–132.
]Search in Google Scholar
[
Schwabe, W. F. S. (1980). Wetting and temperature requirements for apple leaf infection by Venturia inaequalis in South Africa. Phytophylactica, 12, 69–80.
]Search in Google Scholar
[
Sivanesan, A. (1977). The Taxonomy and Pathology of Venturia Species. J. Cramer, Vaduz., Liechtenstein. 94–99.
]Search in Google Scholar
[
Sokolova, O., & Moročko-Bičevska, I. (2021). Evaluation of Venturia pyrina virulence on European pear (Pyrus communis) cultivars by an in vitro methodology. Journal of Phytopathology, 169, 461–470. DOI: 10.1111/jph.13002.10.1111/jph.13002
]Search in Google Scholar
[
Sokolova, O., & Moročko-Bičevska, I. (2022). Evaluation of apple scab and occurrence of Venturia inaequalis races on differential Malus genotypes in Latvia. Proceedings of the Latvian Academy of Sciences, Section B. Natural, Exact, and Applied Sciences, 76 (4), 488–494. DOI: 10.2478/prolas-2022-0075.10.2478/prolas-2022-0075
]Search in Google Scholar
[
Soriano, J. M., Joshi, S. G., Van Kaauwen, M., Noordijk, Y., Groenwold, R., Henken, B., Van de Weg, W. E., & Schouten, H. J. (2009). Identification and mapping of the novel apple scab resistance gene Vd 3. Tree Genetics & Genomes, 5, 475–482. DOI: 10.1007/s11295-009-0201-5.10.1007/s11295-009-0201-5
]Search in Google Scholar
[
Stehmann, C., Pennycook S., & Plummer, K. M. (2001). Molecular identification of a sexual interloper: the pear pathogen, Venturia pirina, has sex on apple. Phytopathology, 91, 633–641. DOI: 10.1094/PHYTO.2001.91.7.633.10.1094/PHYTO.2001.91.7.63318942992
]Search in Google Scholar
[
Univer, T. (1999). Resistance of apple varieties and seedlings to apple scab in Estonia. Transactions of the Estonian Academic Agricultural Society, 9, 101–104.
]Search in Google Scholar
[
Urbanovich, O., & Kazlovskaya, Z. (2008). Identification of scab resistance genes in apple trees by molecular markers. Sodininkyste ir Daržininkyste, 27, 347–357.
]Search in Google Scholar
[
Xu, X. M., & Robinson, J. (2005). Modelling the effects of wetness duration and fruit maturity on infection of apple fruits of Cox’s Orange Pippin and two clones of Gala by Venturia inaequalis. Plant Pathology, 54, 347–356. DOI: 10.1111/j.1365-3059.2005.01177.x.10.1111/j.1365-3059.2005.01177.x
]Search in Google Scholar
[
Zelmene, K., Kārkliņa, K., Ikase, L., & Lācis, G. (2022). Inheritance of apple (Malus x domestica (L.) Borkh) resistance against apple scab (Venturia inaequalis (Cooke) Wint.) in hybrid breeding material obtained by gene pyramiding. Horticulturae, 8, 772. DOI: 10.3390/horticulturae8090772.10.3390/horticulturae8090772
]Search in Google Scholar