This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Neville JA, Welch E, Leffell DJ. Management of nonmelanoma skin cancer in 2007. Nat Rev Clin Oncol. 2007;4(8):462-469. https://doi.org/10.1038/ncponc0883Search in Google Scholar
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J Clinicians. 2018;68(6):394-424. https://doi.org/10.3322/caac.21492Search in Google Scholar
Madan V, Lear JT, Szeimies RM. Non-melanoma skin cancer. The Lancet. 2010;375(9715):673-685. https://doi.org/10.1016/s0140-6736(09)61196-xSearch in Google Scholar
Bath‐Hextall F, Leonardi‐Bee J, Smith C, Meal A, Hubbard R. Trends in incidence of skin basal cell carcinoma. Additional evidence from a UK primary care database study. Intl Journal of Cancer. 2007;121(9):2105-2108. https://doi.org/10.1002/ijc.22952Search in Google Scholar
Gerbaulet A. The GEC ESTRO Handbook of Brachytherapy. ESTRO, Brüssel, 2002Search in Google Scholar
Subashi E, Jacobs C, Hood R, Kirsch DG, Craciunescu O. A design process for a 3D printed patient-specific applicator for HDR brachytherapy of the orbit. 3D Print Med. 2020;6(1). https://doi.org/10.1186/s41205-020-00068-3Search in Google Scholar
Zhao Y, Moran K, Yewondwossen M, et al. Clinical applications of 3-dimensional printing in radiation therapy. Medical Dosimetry. 2017;42(2):150-155. https://doi.org/10.1016/j.meddos.2017.03.001Search in Google Scholar
Park SY, Kang S, Park JM, An HJ, Oh DH, Kim J in. Development and dosimetric assessment of a patient-specific elastic skin applicator for high-dose-rate brachytherapy. Brachytherapy. 2019;18(2):224-232. https://doi.org/10.1016/j.brachy.2018.11.001Search in Google Scholar
Diefenhardt M, Chatzikonstantinou G, Meissner M, et al. HDR brachytherapy with individual epithetic molds for facial skin cancer: techniques and first clinical experience. Int J Dermatology. 2021;60(6):717-723. https://doi.org/10.1111/ijd.15492Search in Google Scholar
Casey S, Bahl G, Awotwi-Pratt JB. High Dose Rate 192-Ir-Brachytherapy for Basal Cell Carcinoma of the Skin using a 3D Printed Surface Mold. Cureus. Published online June 17, 2019. https://doi.org/10.7759/cureus.4913Search in Google Scholar
Arenas M, Sabater S, Sintas A, et al. Individualized 3D scanning and printing for non-melanoma skin cancer brachytherapy: a financial study for its integration into clinical workflow. jcb. 2017;3:270-276. https://doi.org/10.5114/jcb.2017.68134Search in Google Scholar
Bielęda G, Chicheł A, Boehlke M, et al. 3D printing of individual skin brachytherapy applicator: design, manufacturing, and early clinical results. jcb. 2022;14(2):205-214. https://doi.org/10.5114/jcb.2022.114353Search in Google Scholar
Oare C, Wilke C, Ehler E, Mathew D, Sterling D, Ferreira C. Dose calibration of Gafchromic EBT3 film for Ir-192 brachytherapy source using 3D-printed PLA and ABS plastics. 3D Print Med. 2019;5(1). https://doi.org/10.1186/s41205-019-0040-4Search in Google Scholar
Gholami S, Mirzaei HR, et al. A novel phantom design for brachytherapy quality assurance. IJRR. 2016;14(1):67-71. https://doi.org/10.18869/acadpub.ijrr.14.1.67Search in Google Scholar
Hsu SM, Wu CH, Lee JH, et al. A Study on the Dose Distributions in Various Materials from an Ir-192 HDR Brachytherapy Source. Deutsch E, ed. PLoS ONE. 2012;7(9):e44528. https://doi.org/10.1371/journal.pone.0044528Search in Google Scholar
Sinnatamby M, Nagarajan V, Kanipakam RS, Karunanidhi G, Neelakandan V, Kandasamy S. Verification of Radiation Fluence using Stack Film in HDR Brachytherapy with Heterogeneity Algorithm. JCDR. Published online 2018. https://doi.org/10.7860/jcdr/2018/36733.12258Search in Google Scholar
Palmer AL, Bradley D, Nisbet A. Evaluation and implementation of triple‐channel radiochromic film dosimetry in brachytherapy. J Applied Clin Med Phys. 2014;15(4):280-296. https://doi.org/10.1120/jacmp.v15i4.4854Search in Google Scholar
Devic S. Radiochromic film dosimetry: Past, present, and future. Physica Medica. 2011;27(3):122-134. https://doi.org/10.1016/j.ejmp.2010.10.001Search in Google Scholar
Bielęda G, Marach A, Boehlke M, Zwierzchowski G, Malicki J. 3D-printed surface applicators for brachytherapy: a phantom study. jcb. 2021;13(5):549-562. https://doi.org/10.5114/jcb.2021.110304Search in Google Scholar
Wolfsberger LD, Wagar M, Nitsch P, Bhagwat MS, Zygmanski P. Angular dose dependency of MatriXX TM and its calibration. J Applied Clin Med Phys. 2010;11(1):241-251. https://doi.org/10.1120/jacmp.v11i1.3057Search in Google Scholar
Austerlitz C, Campos CAT. A BrachyPhantom for verification of dose calculation of HDR brachytherapy planning system. Medical Physics. 2013;40(11). https://doi.org/10.1118/1.4826170Search in Google Scholar
Yoosuf ABM, Jeevanandam P, Whitten G, Workman G, McGarry CK. Verification of high-dose-rate brachytherapy treatment planning dose distribution using liquid-filled ionization chamber array. JCB. 2018;10(2):142-154. https://doi.org/10.5114/jcb.2018.75599Search in Google Scholar
Poppe B, Stelljes TS, Looe HK, Chofor N, Harder D, Willborn K. Performance parameters of a liquid filled ionization chamber array. Med Phys. 2013;40(8):082106. https://doi.org/10.1118/1.4816298Search in Google Scholar
Sarfehnia A, Kawrakow I, Seuntjens J. Direct measurement of absorbed dose to water in HDR I192r brachytherapy: Water calorimetry, ionization chamber, Gafchromic film, and TG-43. Med Phys. 2010;37(4):1924-1932. https://doi.org/10.1118/1.3352685Search in Google Scholar
Gambarini G, Borroni M, Grisotto S, et al. Solid state TL detectors for in vivo dosimetry in brachytherapy. Applied Radiation and Isotopes. 2012;71:48-51. https://doi.org/10.1016/j.apradiso.2012.06.018Search in Google Scholar
Avilés Lucas P, Lourenço V, Vermesse D, Cutarella D, Aubineau-Lanièce I. Absorbed dose to water distribution measured around an HDR192Ir brachytherapy source by thermoluminescent dosimeters. Metrologia. 2012;49(5):S228-S230. https://doi.org/10.1088/0026-1394/49/5/s228Search in Google Scholar
Bassi S, Berrigan L, Zuchora A, Fahy L, Moore M. End-to-end dosimetric audit: A novel procedure developed for Irish HDR brachytherapy centres. Physica Medica. 2020;80:221-229. https://doi.org/10.1016/j.ejmp.2020.10.005Search in Google Scholar
Lambert J, Nakano T, Law S, Elsey J, McKenzie DR, Suchowerska N. In vivo dosimeters for HDR brachytherapy: A comparison of a diamond detector, MOSFET, TLD, and scintillation detector. Medical Physics. 2007;34(5):1759-1765. https://doi.org/10.1118/1.2727248Search in Google Scholar
Watanabe Y, Maeyama T, Mochizuki A, et al. Verification of dose distribution in high-dose-rate brachytherapy using a nanoclay-based radio-fluorogenic gel dosimeter. Phys Med Biol. 2020;65(17):175008. https://doi.org/10.1088/1361-6560/ab98d2Search in Google Scholar
Venning A, Healy B, Nitschke K, Baldock C. Investigation of the MAGAS normoxic polymer gel dosimeter with Pyrex glass walls for clinical radiotherapy dosimetry. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2005;555(1-2):396-402. https://doi.org/10.1016/j.nima.2005.09.002Search in Google Scholar
Ibbott GS. Applications of gel dosimetry. J Phys: Conf Ser. 2004;3:58-77. https://doi.org/10.1088/1742-6596/3/1/007Search in Google Scholar
Senkesen O, Tezcanli E, Buyuksarac B, Ozbay I. Comparison of 3D dose distributions for HDR 192Ir brachytherapy sources with normoxic polymer gel dosimetry and treatment planning system. Medical Dosimetry. 2014;39(3):266-271. https://doi.org/10.1016/j.meddos.2014.04.003Search in Google Scholar
Carrara M, Fallai C, Gambarini G, Negri A. Fricke gel-layer dosimetry in high dose-rate brachytherapy. Applied Radiation and Isotopes. 2010;68(4-5):722-725. https://doi.org/10.1016/j.apradiso.2009.09.036Search in Google Scholar
Poder J, Corde S. I‐125 ROPES eye plaque dosimetry: Validation of a commercial 3D ophthalmic brachytherapy treatment planning system and independent dose calculation software with GafChromic® EBT3 films. Medical Physics. 2013;40(12). https://doi.org/10.1118/1.4828786Search in Google Scholar
Pagulayan C, Heng SM, Corde S. Dosimetric validation of the Theragenics AgX-100® I-125 seed for ROPES eye plaque brachytherapy. Australas Phys Eng Sci Med. 2019;42(2):599-609. https://doi.org/10.1007/s13246-019-00761-6Search in Google Scholar
Deufel CL, Furutani KM. Quality assurance for high dose rate brachytherapy treatment planning optimization: using a simple optimization to verify a complex optimization. Phys Med Biol. 2014;59(3):525-540. https://doi.org/10.1088/0031-9155/59/3/525Search in Google Scholar
Dempsey C. Methodology for commissioning a brachytherapy treatment planning system in the era of 3D planning. Australas Phys Eng Sci Med. 2010;33(4):341-349. https://doi.org/10.1007/s13246-010-0036-2Search in Google Scholar
Damato AL, Devlin PM, Bhagwat MS, et al. Independent brachytherapy plan verification software: Improving efficacy and efficiency. Radiotherapy and Oncology. 2014;113(3):420-424. https://doi.org/10.1016/j.radonc.2014.09.015Search in Google Scholar
Shirazi MAM, Faghihi R, Siavashpour Z, Nedaie HA, Mehdizadeh S, Sina S. Independent evaluation of an in‐house brachytherapy treatment planning system using simulation, measurement and calculation methods. J Applied Clin Med Phys. 2012;13(2):103-112. https://doi.org/10.1120/jacmp.v13i2.3687Search in Google Scholar
Ballester F, Puchades V, Lluch JL, et al. Technical note: Monte‐Carlo dosimetry of the HDR 12i and Plus sources. Medical Physics. 2001;28(12):2586-2591. https://doi.org/10.1118/1.1420398Search in Google Scholar