Uneingeschränkter Zugang

Quantitative dosimetric analysis with independent software solutions and comprehensive treatment plan parameter evaluation in skin brachytherapy

, , , , ,  und   
03. Okt. 2024

Zitieren
COVER HERUNTERLADEN

Neville JA, Welch E, Leffell DJ. Management of nonmelanoma skin cancer in 2007. Nat Rev Clin Oncol. 2007;4(8):462-469. https://doi.org/10.1038/ncponc0883 Search in Google Scholar

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J Clinicians. 2018;68(6):394-424. https://doi.org/10.3322/caac.21492 Search in Google Scholar

Madan V, Lear JT, Szeimies RM. Non-melanoma skin cancer. The Lancet. 2010;375(9715):673-685. https://doi.org/10.1016/s0140-6736(09)61196-x Search in Google Scholar

Bath‐Hextall F, Leonardi‐Bee J, Smith C, Meal A, Hubbard R. Trends in incidence of skin basal cell carcinoma. Additional evidence from a UK primary care database study. Intl Journal of Cancer. 2007;121(9):2105-2108. https://doi.org/10.1002/ijc.22952 Search in Google Scholar

Gerbaulet A. The GEC ESTRO Handbook of Brachytherapy. ESTRO, Brüssel, 2002 Search in Google Scholar

Subashi E, Jacobs C, Hood R, Kirsch DG, Craciunescu O. A design process for a 3D printed patient-specific applicator for HDR brachytherapy of the orbit. 3D Print Med. 2020;6(1). https://doi.org/10.1186/s41205-020-00068-3 Search in Google Scholar

Zhao Y, Moran K, Yewondwossen M, et al. Clinical applications of 3-dimensional printing in radiation therapy. Medical Dosimetry. 2017;42(2):150-155. https://doi.org/10.1016/j.meddos.2017.03.001 Search in Google Scholar

Park SY, Kang S, Park JM, An HJ, Oh DH, Kim J in. Development and dosimetric assessment of a patient-specific elastic skin applicator for high-dose-rate brachytherapy. Brachytherapy. 2019;18(2):224-232. https://doi.org/10.1016/j.brachy.2018.11.001 Search in Google Scholar

Diefenhardt M, Chatzikonstantinou G, Meissner M, et al. HDR brachytherapy with individual epithetic molds for facial skin cancer: techniques and first clinical experience. Int J Dermatology. 2021;60(6):717-723. https://doi.org/10.1111/ijd.15492 Search in Google Scholar

Casey S, Bahl G, Awotwi-Pratt JB. High Dose Rate 192-Ir-Brachytherapy for Basal Cell Carcinoma of the Skin using a 3D Printed Surface Mold. Cureus. Published online June 17, 2019. https://doi.org/10.7759/cureus.4913 Search in Google Scholar

Arenas M, Sabater S, Sintas A, et al. Individualized 3D scanning and printing for non-melanoma skin cancer brachytherapy: a financial study for its integration into clinical workflow. jcb. 2017;3:270-276. https://doi.org/10.5114/jcb.2017.68134 Search in Google Scholar

Bielęda G, Chicheł A, Boehlke M, et al. 3D printing of individual skin brachytherapy applicator: design, manufacturing, and early clinical results. jcb. 2022;14(2):205-214. https://doi.org/10.5114/jcb.2022.114353 Search in Google Scholar

Oare C, Wilke C, Ehler E, Mathew D, Sterling D, Ferreira C. Dose calibration of Gafchromic EBT3 film for Ir-192 brachytherapy source using 3D-printed PLA and ABS plastics. 3D Print Med. 2019;5(1). https://doi.org/10.1186/s41205-019-0040-4 Search in Google Scholar

Gholami S, Mirzaei HR, et al. A novel phantom design for brachytherapy quality assurance. IJRR. 2016;14(1):67-71. https://doi.org/10.18869/acadpub.ijrr.14.1.67 Search in Google Scholar

Hsu SM, Wu CH, Lee JH, et al. A Study on the Dose Distributions in Various Materials from an Ir-192 HDR Brachytherapy Source. Deutsch E, ed. PLoS ONE. 2012;7(9):e44528. https://doi.org/10.1371/journal.pone.0044528 Search in Google Scholar

Sinnatamby M, Nagarajan V, Kanipakam RS, Karunanidhi G, Neelakandan V, Kandasamy S. Verification of Radiation Fluence using Stack Film in HDR Brachytherapy with Heterogeneity Algorithm. JCDR. Published online 2018. https://doi.org/10.7860/jcdr/2018/36733.12258 Search in Google Scholar

Palmer AL, Bradley D, Nisbet A. Evaluation and implementation of triple‐channel radiochromic film dosimetry in brachytherapy. J Applied Clin Med Phys. 2014;15(4):280-296. https://doi.org/10.1120/jacmp.v15i4.4854 Search in Google Scholar

Devic S. Radiochromic film dosimetry: Past, present, and future. Physica Medica. 2011;27(3):122-134. https://doi.org/10.1016/j.ejmp.2010.10.001 Search in Google Scholar

Bielęda G, Marach A, Boehlke M, Zwierzchowski G, Malicki J. 3D-printed surface applicators for brachytherapy: a phantom study. jcb. 2021;13(5):549-562. https://doi.org/10.5114/jcb.2021.110304 Search in Google Scholar

Wolfsberger LD, Wagar M, Nitsch P, Bhagwat MS, Zygmanski P. Angular dose dependency of MatriXX TM and its calibration. J Applied Clin Med Phys. 2010;11(1):241-251. https://doi.org/10.1120/jacmp.v11i1.3057 Search in Google Scholar

Austerlitz C, Campos CAT. A BrachyPhantom for verification of dose calculation of HDR brachytherapy planning system. Medical Physics. 2013;40(11). https://doi.org/10.1118/1.4826170 Search in Google Scholar

Yoosuf ABM, Jeevanandam P, Whitten G, Workman G, McGarry CK. Verification of high-dose-rate brachytherapy treatment planning dose distribution using liquid-filled ionization chamber array. JCB. 2018;10(2):142-154. https://doi.org/10.5114/jcb.2018.75599 Search in Google Scholar

Poppe B, Stelljes TS, Looe HK, Chofor N, Harder D, Willborn K. Performance parameters of a liquid filled ionization chamber array. Med Phys. 2013;40(8):082106. https://doi.org/10.1118/1.4816298 Search in Google Scholar

Sarfehnia A, Kawrakow I, Seuntjens J. Direct measurement of absorbed dose to water in HDR I192r brachytherapy: Water calorimetry, ionization chamber, Gafchromic film, and TG-43. Med Phys. 2010;37(4):1924-1932. https://doi.org/10.1118/1.3352685 Search in Google Scholar

Gambarini G, Borroni M, Grisotto S, et al. Solid state TL detectors for in vivo dosimetry in brachytherapy. Applied Radiation and Isotopes. 2012;71:48-51. https://doi.org/10.1016/j.apradiso.2012.06.018 Search in Google Scholar

Avilés Lucas P, Lourenço V, Vermesse D, Cutarella D, Aubineau-Lanièce I. Absorbed dose to water distribution measured around an HDR192Ir brachytherapy source by thermoluminescent dosimeters. Metrologia. 2012;49(5):S228-S230. https://doi.org/10.1088/0026-1394/49/5/s228 Search in Google Scholar

Bassi S, Berrigan L, Zuchora A, Fahy L, Moore M. End-to-end dosimetric audit: A novel procedure developed for Irish HDR brachytherapy centres. Physica Medica. 2020;80:221-229. https://doi.org/10.1016/j.ejmp.2020.10.005 Search in Google Scholar

Lambert J, Nakano T, Law S, Elsey J, McKenzie DR, Suchowerska N. In vivo dosimeters for HDR brachytherapy: A comparison of a diamond detector, MOSFET, TLD, and scintillation detector. Medical Physics. 2007;34(5):1759-1765. https://doi.org/10.1118/1.2727248 Search in Google Scholar

Watanabe Y, Maeyama T, Mochizuki A, et al. Verification of dose distribution in high-dose-rate brachytherapy using a nanoclay-based radio-fluorogenic gel dosimeter. Phys Med Biol. 2020;65(17):175008. https://doi.org/10.1088/1361-6560/ab98d2 Search in Google Scholar

Venning A, Healy B, Nitschke K, Baldock C. Investigation of the MAGAS normoxic polymer gel dosimeter with Pyrex glass walls for clinical radiotherapy dosimetry. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2005;555(1-2):396-402. https://doi.org/10.1016/j.nima.2005.09.002 Search in Google Scholar

Ibbott GS. Applications of gel dosimetry. J Phys: Conf Ser. 2004;3:58-77. https://doi.org/10.1088/1742-6596/3/1/007 Search in Google Scholar

Senkesen O, Tezcanli E, Buyuksarac B, Ozbay I. Comparison of 3D dose distributions for HDR 192Ir brachytherapy sources with normoxic polymer gel dosimetry and treatment planning system. Medical Dosimetry. 2014;39(3):266-271. https://doi.org/10.1016/j.meddos.2014.04.003 Search in Google Scholar

Carrara M, Fallai C, Gambarini G, Negri A. Fricke gel-layer dosimetry in high dose-rate brachytherapy. Applied Radiation and Isotopes. 2010;68(4-5):722-725. https://doi.org/10.1016/j.apradiso.2009.09.036 Search in Google Scholar

Poder J, Corde S. I‐125 ROPES eye plaque dosimetry: Validation of a commercial 3D ophthalmic brachytherapy treatment planning system and independent dose calculation software with GafChromic® EBT3 films. Medical Physics. 2013;40(12). https://doi.org/10.1118/1.4828786 Search in Google Scholar

Pagulayan C, Heng SM, Corde S. Dosimetric validation of the Theragenics AgX-100® I-125 seed for ROPES eye plaque brachytherapy. Australas Phys Eng Sci Med. 2019;42(2):599-609. https://doi.org/10.1007/s13246-019-00761-6 Search in Google Scholar

Deufel CL, Furutani KM. Quality assurance for high dose rate brachytherapy treatment planning optimization: using a simple optimization to verify a complex optimization. Phys Med Biol. 2014;59(3):525-540. https://doi.org/10.1088/0031-9155/59/3/525 Search in Google Scholar

Dempsey C. Methodology for commissioning a brachytherapy treatment planning system in the era of 3D planning. Australas Phys Eng Sci Med. 2010;33(4):341-349. https://doi.org/10.1007/s13246-010-0036-2 Search in Google Scholar

Damato AL, Devlin PM, Bhagwat MS, et al. Independent brachytherapy plan verification software: Improving efficacy and efficiency. Radiotherapy and Oncology. 2014;113(3):420-424. https://doi.org/10.1016/j.radonc.2014.09.015 Search in Google Scholar

Shirazi MAM, Faghihi R, Siavashpour Z, Nedaie HA, Mehdizadeh S, Sina S. Independent evaluation of an in‐house brachytherapy treatment planning system using simulation, measurement and calculation methods. J Applied Clin Med Phys. 2012;13(2):103-112. https://doi.org/10.1120/jacmp.v13i2.3687 Search in Google Scholar

Ballester F, Puchades V, Lluch JL, et al. Technical note: Monte‐Carlo dosimetry of the HDR 12i and Plus sources. Medical Physics. 2001;28(12):2586-2591. https://doi.org/10.1118/1.1420398 Search in Google Scholar

Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Medizin, Biomedizinische Technik, Physik, Technische und angewandte Physik, Medizinische Physik