Accesso libero

Optimization of the biofuel production by idealized fermentation of the animal manure, chicken wastes, and sewage sludge

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Akin, M., Bartkiene, E., Fatih Özogul, F., Eyduran, S.P., Trif, M., Lorenzo J.M. & Rocha J.M. (2023). Conversion of organic wastes into biofuel by microorganisms: A bibliometric review. Clean. Circul. Bioeconom. (6), 100053. DOI: 10.1016/j.clcb.2023.100053. Search in Google Scholar

Aziz, T., Shah, Z., Sarwar, A., Ullah, N., Khan, A.A., Sameeh, M.Y., Haiying, C. & Lin, L. (2023). Production of bioethanol from pretreated rice straw, an integrated and mediated upstream fermentation process. Biomass. Conver. Biorefin. DOI: 10.1007/s13399-023-04283-w. Search in Google Scholar

IRENA. (2018). International Renewable Energy Agency. Report about Renewable Energy Outlook: Egypt ISBN 978-92-9260-069-3, p.-W.I.O. Search in Google Scholar

Szostek, M., Kaniuczak, J., Hajduk, E., Stanek-Tarkowska, J., Jasiński, T., Niemiec, W. & Smusz, R. (2018). Effect of sewage sludge on the yield and energy value of the aboveground biomass of Jerusalem artichoke (Helianthus tuberosus L.). Archiv. Environ. Protec. 44(3), 42–50. DOI: 10.24425/122285. Search in Google Scholar

De Almeida, M.A. & Colombo, R. (2021). Production chain of first-generation sugarcan bioethanol: Characterization and value-added application of wastes. BioEner. Res. 1–16. DOI: 10.1007/s12155-021-10301-4 Search in Google Scholar

Hawrot-Paw, M., Koniuszy, A., Zając, G., Szyszlak-Bargłowicz, J. & Jaklewicz, J. (2020). Production of second generation bioethanol from straw during simultaneous microbial saccharification and fermentation. Archiv. Environ. Protec. 48(1), 47–52. DOI: 10.24425/aep.2020.132525. Search in Google Scholar

Perveen, I., Bukhari, B., Sarwar, A., Aziz, T., Koser, N., Younis, H., Ahmad, Q., Sabahat, S., Tzora, A. & Skoufos, I. (2023). Applications and efficacy of traditional to emerging trends in lactofermentation and submerged cultivation of edible mushrooms. Biomass. Conver. Biorefin. DOI: 10.1007/s13399-023-04694-9. Search in Google Scholar

Leta, D., Solomon, L., Chavan, R.B., Daniel, M. & Anbessa, D. (2015). Production of Biogas from Fruit and Vegetable Wastes Mixed with Different Wastes. Environ. Ecol. Res. 3(3), 65–71. DOI: 10.13189/eer.2015.030303. Search in Google Scholar

Kozłowski, K., Dach, J., Lewicki, A., Malińska, K., Paulino do Carmo, I.E. & Czekała, W. (2019). Potential of biogas production from animal manure in Poland. Archiv. Environ. Protec. 45(3), 99–108. DOI: 10.24425/aep.2019.128646. Search in Google Scholar

Amir, S. (2005). Contribution à la valorisation de boues de stations d’épuration par compostage: Devenir des micropolluantsmétalliques et organiques et bilanhumique du composté. Doctorat, National Institute of Polytechnique, Toulouse, France, 341. Search in Google Scholar

Elsayed, M., Eraky, M., Osman, A., Wang, J., Farghali, M., Rashwan, A.K., Yacoub, I.H., Hanelt, D. & Abomohra, A. (2023). Sustainable valorization of waste glycerol into bioethanol and biodiesel through biocircular approaches: a review. Environ. Chem. Let. DOI: 10.1007/s10311-023-01671-6. Search in Google Scholar

Cesaro, A. & Belgiorno, B. (2015). Combined Biogas and Bioethanol Production: Opportunities and Challenges for Industrial Application. Energies. 8(8), 8121–8144. DOI: 10.3390/en8088121 Search in Google Scholar

Venko, B. (2017). Hand book, Biogas, Biodiesel and Bioethanol as Multifunctional Renewable fuels and raw Materials. (pp. 5772–5734). Search in Google Scholar

Naha, A., Debroy, R., Sharma, D., Shah, M.P. & Nath, S. (2023). Microbial fuel cell: A state-of-the-art and revolutionizing technology for efficient energy recovery. Clean. Circul. Bioeconom. (5), 100050. DOI: 10.1016/j.clcb.2023.100050. Search in Google Scholar

Chander, A.M., Singh, N.K. & Venkateswaran, K. (2023). Microbial Technologies in Waste Management, Energy Generation and Climate Change: Implications on Earth and Space. J. Indian Inst. Sci. A Multidiscip. Rev. J. 103(3), 833–838. DOI: 10.1007/s41745-023-00388-3. Search in Google Scholar

Dębowski, M., Grala, A., Zieliński, M., Dudek, M. (2022). Efficiency of The Methane Fermentation Process of Macroalgae Biomass Originating From Puck Bay. Archives of Environmental Protection, 38(4), 99–107. DOI: 10.2478/v10265-012-0033-5. Search in Google Scholar

Kisielewska, M., Dębowski, M. & Zieliński, M. (2020). Comparison of biogas production from anaerobic digestion of microalgae species belonged to various taxonomic groups. Archiv. Environ. Protec. 46(1), 33–40. DOI 10.24425/aep.2020.132523. Search in Google Scholar

Charnay, F. (2005). Compostage des déchetsurbainsdans les Pays en développement :élaborationd’unedémarcheméthodologique pour une production pérenne de compost. Doctorat University of Limoges. Search in Google Scholar

Laskri, N. & Nawel, N. (2015). Comparative Study for Biogas Production from Different Wastes. Inter. J. Bio-Sci. Bio-Technol. 7(4), 39–46. DOI: 10.14257/ijbsbt.2015.7.4.05. Search in Google Scholar

Batstone, D.J., Keller, J., Angelidaki, I., Kalyuzhnyi, S.V., Pavlostathis, S.G., Rozzi, A., Sanders, W.T.M., Siegrist, H. & Vavilin, V.A. (2002). The IWA Anaerobic Digestion Model No 1 (ADM1). Water Sci. Technol. 45(10), 65–73. DOI: 10.2166/wst.2002.0292. Search in Google Scholar

Page, A.L., Miller, R.H. & Keeney, D.R. (1982). Methods of Soil Analysis. Part 2. Soil Soc. Amer. Inc. Madison, Wisconsin, U.S.A. (pp. 310). Search in Google Scholar

APHA. (1992). A.P.H., Association, Standard methods for the examination of water and waste water. 18th, Washington, D.C. Search in Google Scholar

Jodice, R., Luzzati, A. & Nappi, P. (1982). The influence of organic fertilizers, obtained from poplar barks, on the correction of iron chlorosis of Luipinus albus L. Plant. Soil. (65), 309–317. DOI: 10.1007/BF02375052. Search in Google Scholar

Richards, L.A. (1954). Diagnosis and Improvement of Saline and Alkali Soil. U.S. Dept. Agric. (60), 50–75. Search in Google Scholar

Jackson, M.L. (1973). Soil Chemical Analysis. Prentice-Hall of Englewood Cliffs, New Jersy, (pp. 925). Search in Google Scholar

Deng, S.P. & Tabatabai, M.A. (1994). Cellulase activity of soils. Soil Biol. Biochem. 26(10), 1347–1354. DOI: 10.1016/0038-0717(94)90216-x. Search in Google Scholar

Miller, G.L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytic. Chem. 31(3), 426–428. Search in Google Scholar

Kunitz, M. (1947). Crystalline Soybean Trypsin Inhibitor, II. General Properties. J. Gener. Physiol. 30(4), 291–310. Search in Google Scholar

Caputi, J.A., Ueda, M. & Brown, T. (1968). Spectrophotometric determination of ethanol in wine. Amer. J. Enol. Vitic. 19(3), 160–165. DOI: 10.5344/ajev.1968.19.3.160. Search in Google Scholar

Johnson, L.E., Bond, C.J. & Fribourg, H. (1959). Methods for studying soil microflora-plant disease relationships. Minneapolis: Burgess Publishing Company. Search in Google Scholar

Maramba, F.D., Obias, E.D., Julian, B., Taganas, C., Alumbro, R.D. & Judan, A.A. (1978). Biogas and waste recycling, the Philippine experience. Maya farms division, liberity flour mills, Inc. Metro Manila, Philippines. Search in Google Scholar

Wujcik, W.J. & Jewell, W.J. (1980). Dry anaerobic fermentation. Biotechnology and Bioengineering Symp., Jon Willey & Sons, Inc. N.Y. 10, 43–65. https://www.osti.gov/biblio/6872238. Search in Google Scholar

Chomini, M., Ogbonna, C., Falemara, B. & Micah, P. (2015). Effect of codigestion of cow dung and poultry manure on biogas yield, proximate and amino acid contents of their effluents. IOSR J. Agric. Veterin. Sci. 8(11), 48–56. DOI: 10.9790/2380-081114856. Search in Google Scholar

Nnabuchi, M., Akubuko, F., Augustine, C. & Ugwu, G. (2012). Assessment of the effect of co-digestion of chicken dropping and cow dung on biogas generation. Glob. J. Sci. Front. Res. Phys. Space Scie. 12(7), Retrieved from http://citeseerx.ist.psu.edu/viewdoc/summary? DOI: 10.1.1.349.3196. Search in Google Scholar

Afifi, M.M. & Mahmoud, Y.I.S.C. (2020). Biogas generation from co-digestion manure, poultry waste and kitchen refuses. Nation. Egypt. J. Microbiol. 55(1), 94–112. https://www.ajol.info/index.php/nejmi. Search in Google Scholar

El-Akshar Y.S. & Faisal H.S.Y. (2020). Anaerobic Digestion of Food Wastes under Different Concentrations of Total Solids. Inter. J. Environ. 9(3), 159–170. DOI: 10.36632/ije/2020.9.3.10. Search in Google Scholar

Bajpai, P. (2017). Basics of anaerobic digestion process. In Springer Briefs in Applied Sciences and Technology, Singapore. (pp. 7–12). Search in Google Scholar

Khatoon, N., Ullah, N., Sarwar, A., Ur Rahman, S., Khan, A. A., Aziz, T., Alharbi, M. & Alshammari, A. (2023). Isolation and identification of protease-producing Bacillus strain from cold climate soil and optimization of its production by applying different fermentation conditions Appl. Ecol. Environ. Res. 21(4), 3391–3401. DOI: 10.15666/aeer/2104_33913401. Search in Google Scholar

Dinova, N., Belouhova, M., Schneider, I., Rangelov, J. & Topalova, Y. (2018). Control of biogas production process by enzymat and fluorescent image analysis. Biotechnol. Biotechnologic. Equip. 32(2), 366–375. DOI: 10.1080/13102818.2018.1425637. Search in Google Scholar

Ullah, N., Ur Rehman, M., Sarwar, A., Nadeem, M., Nelofer, R., Irfan, M., Idrees, M., Ali, U., Naz, S. & Aziz, T. (2023). Effect of bioprocess parameters on alkaline protease production by locally isolated Bacillus cereus AUST7 using tannery waste in submerged fermentation. Biomass. Conver. Biorefin. DOI: 10.1007/s13399-023-04498-x. Search in Google Scholar

Alessandra, C. & Vincenzo, B. (2015). Combined Biogas and Bioethanol Production: Opportunities and Challenges for Industrial Application. Energies. (8), 8121–8144. DOI: 10.3390/en8088121 Search in Google Scholar

Bochmann, G., Herfellner, T., Susanto, F., Kreuter, F. & Pesta, G. (2018). Application of enzymes in anaerobic digestion. Water Sci. Technol. 56(10), 29–35. DOI: 10.2166/wst.2007.727. Search in Google Scholar

eISSN:
1899-4741
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering