Accesso libero

Experimental research on the volatilization and condensation of ammonium bisulfate as SCR byproduct

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Wang, L.L., Yang, M., Wu, S.S., Huang, C.Y., Zhang, Q.W., Zhu, L., Yao, Y., He, J.L., Kong, F.H. & He, J. (2016). Difficulties and countermeasures of SCR denitrification system operation in ultra low emission situation. THERMAL POWER GENERATION. 45(12), 19–24. DOI: 10.19666/j. rlfd.201912286. Search in Google Scholar

2. Ma, S.C., Deng, Y., Wu, W.L., Zhang, L.N., Ma, J.X. & Zhang, X.N. (2016). Experimental research on characteristic of ABS formation in the process of SCR. J. Chinese Soc. Power Engin. 36(2), 143–150. DOI: 10.3969/j.issn.1674-7607.2016.02.010. Search in Google Scholar

3. Mark, A., Nan-Yu, T. & J.A., D. (2003). Density functional theory studies of mechanistic aspects of the SCR reaction on vanadium oxide catalysts. J. Catal. 213(2), 115–125. DOI: 10.1016/S0021-9517(02)00031-3.10.1016/S0021-9517(02)00031-3 Search in Google Scholar

4. Ya, J.S., H, S., Yu, H.Z, Hong, M.F., Ya, P.Z. & Lin, J.Y. (2016). Formation and decomposition of NH4HSO4 during selective catalytic reduction of NO with NH3 over V2O5-WO3/TiO2 catalysts. Fuel Proces. Technol. 150, 141–147. DOI: 10.1016/j. fuproc.2016.05.016.10.1016/j.fuproc.2016.05.016 Search in Google Scholar

5. Srivastava, R.K., Hall, R.E., Khan, S., Culligan, K. & Bruce, W.L. (2005). Nitrogen oxides emission control options for coal-fire delectric utility boiler. J. Air & Waste Manag. Assoc. 55, 1367–1388. DOI: 10.1080/10473289.2005.10464736.10.1080/10473289.2005.1046473616259432 Search in Google Scholar

6. Wang, Y.C. & Tang, G.H. (2016). Prediction of sulfuric acid dew point temperature on heat transfer fin surface. Appl. Thermal Engin. 98, 492–501. DOI: 10.1016/j.applthermaleng.2015.12.078.10.1016/j.applthermaleng.2015.12.078 Search in Google Scholar

7. Zhu, Y.Q., Zhou, W.H., Xia, C. & Hou, Q.C. (2022). Application and Development of Selective Catalytic Reduction Technology for Marine Low-Speed Diesel Engine: Trade-Off among High Sulfur Fuel, High Thermal Efficiency, and Low Pollution Emission. Atmosphere. 13, 1–21. DOI: 10.3390/atmos13050731.10.3390/atmos13050731 Search in Google Scholar

8. Zhou, C.Y., Zhang, L.N., Deng, Y. & Ma, S.C. (2016). Research progress on ammonium bisulfate formation and control in the process of selective catalytic reduction. Environ. Progress & Sustainable Energy. DOI: 10.1002/ep.12409.10.1002/ep.12409 Search in Google Scholar

9. Muzio, L., Bogseth, S., Himes, R., Chien, Y.C. & Rankin, D.D. (2017). Ammonium bisulfate formation and reduced load SCR operation. Fuel. 206, 180–189. DOI: 10.1016/j. fuel.2017.05.081.10.1016/j.fuel.2017.05.081 Search in Google Scholar

10. Liu, K.W. & Chen, T.L. (2002). Studies on the thermal decomposition of ammonium sulfate. Chem. Res. Applic. 14(6), 737–738. DOI: 10.3969/j.issn.1004-1656.2002.06.038. Search in Google Scholar

11. Wang, L.M., Bu, Y.F., Li, D.C., Tang, C.L. & Che, D.F. (2019). Single and multi-objective optimizations of rotary regenerative air preheater for coal-fired power plant considering the ammonium bisulfate deposition. Internat. J. Thermal Sci. 136, 52–59. DOI: 10.1016/j.ijthermalsci.2018.10.005.10.1016/j.ijthermalsci.2018.10.005 Search in Google Scholar

12. Zhao, H., Zhang, J.K. & Zhang, K. (2018). Investigation of the deposition characteristics of ammonium bisulfate and fly ash blend using an on-line digital image technique: Effect of deposition surface temperature. Fuel Proc. Technol. 179, 359–368. DOI: 10.1016/j.fuproc.2018.07.030.10.1016/j.fuproc.2018.07.030 Search in Google Scholar

13. Luo, M., Zhao, L.L. & Li, S.Y. (2016). Numerical simulation of ash deposition with adhesion of NH4HSO4 in an air preheater. Chin. Soc. Power Eng. 36, 883–888. DOI: 10.3969/j. issn.1674-7607.2016.11.005. Search in Google Scholar

14. Chen, H., Pan, P.Y., Wang, Y.G. & Zhao, Q.X. (2016). Field study on the corrosion and ash deposition of low-temperature heating surface in a large-scale coal-fired power plant. Fuel. 208, 149–159. DOI: 10.1016/j.fuel.2017.06.120.10.1016/j.fuel.2017.06.120 Search in Google Scholar

15. Wei, W., Sun, F.Z. & Ma, L. (2018). Effect of fine ash particles on formation mechanism of fouling covering heat exchangers in coal-fired power plants. Appl. Thermal Engin. 142, 269–277. DOI: 10.1016/j.applthermaleng.2018.06.086.10.1016/j.applthermaleng.2018.06.086 Search in Google Scholar

16. Chen, H., Pan, P.Y., Shao, H.S., Wang, Y.G. & Zhao, Q.X. (2017). Corrosion and viscous ash deposition of a rotary air preheater in a coal-fired power plant. Appl. Thermal Engin. 113, 373–385. DOI: 10.1016/j.applthermaleng.2016.10.160.10.1016/j.applthermaleng.2016.10.160 Search in Google Scholar

17. Bu, Y.F., Wang, L.M., Chen, X., Wei, X.Y., Deng, L. & Che, D.F. (2018). Numerical analysis of ABS deposition and corrosion on a rotary air preheater. Appl. Thermal Engin. 131, 669–677. DOI: 10.1016/j.applthermaleng.2017.11.082.10.1016/j.applthermaleng.2017.11.082 Search in Google Scholar

18. Cheng, M., Chen, Z., Liao, Q., Zhang, J., Ding, Y. & Zhu, X. (2019). Experimental research on the ash deposition characteristics of 3-D finned tube bundle. Appl. Thermal Engin. 153, 556–564. DOI: 10.1016/j.applthermaleng.2019.03.051.10.1016/j.applthermaleng.2019.03.051 Search in Google Scholar

19. Burke, J.M. & Johnson, K.L. (1982). Ammonium sul-fate and bisulfate formation in air preheaters. British Med. J. 329(7463), 446. Search in Google Scholar

20. Pan, L., Liu, Q.Y. & Zhenyu Liu. (2012). Behaviors of NH4HSO4 in SCR of NO by NH3 over different cokes. Chem. Engin. J. (181–182), 169–173. DOI: 10.1016/j.cej.2011.11.051.10.1016/j.cej.2011.11.051 Search in Google Scholar

21. Menasha, J., Dunn-Rankin, D., Muzio, L. & Stallings, J. (2011). Ammonium bisulfate formation temperature in a bench--scale single-channel air preheater. Fuel. 90, 2445–2453. DOI: 10.1016/j.fuel.2011.03.006.10.1016/j.fuel.2011.03.006 Search in Google Scholar

22. Zhu, Z.P., Niu, H.X., Liu, Z.Y. & Liu, S. (2000). Decomposition and Reactivity of NH4HSO4 on V2O5/AC Catalysts Used for NO Reduction with Ammonia. J. Catal. 195(2), 268–278. DOI: 10.1006/jcat.2000.2961.10.1006/jcat.2000.2961 Search in Google Scholar

23. Shu, H., Zhang, Y.H., Fan, H.M., Zhang, Y.P. & Yang, L. (2015). FT-IR study of formation and decomposition of ammonium bisulfates on surface of SCR catalyst for nitrogen removal. CIESC Journal. 66(11), 4460–4468. DOI: 10.11949/j. jssn.0438-1157.20150450. Search in Google Scholar

24. Ma, S., Jin, X., Sun, Y. & Cui, J. (2010). The formation mechanism of ammonium bisulfate in SCR flue gas denitrification process and control thereof. THERMAL POWER GENERATION. 39(8),12–17. DOI: 10.3969/j. issn.10022336.4.2010.08.012. Search in Google Scholar

25. Ma, S., Guo, M., Song, H., Chen, G., Yang, J., Zang, B. & Li, D. (2014). Formation mechanism and influencing factors of ammonium bisulfate during the selective catalytic reduction process. THERMAL POWER GENERATION. 43(2), 75–78, 86. DOI: 10.3969/j.issn.1002-3364.2014.02.075. Search in Google Scholar

26. Ma, S., Deng, Y., Wu, W. & Zhang, L. (2016). Reaction characteristic of by-product ammonium bisulfate from SCR denitrification and fly ash in air preheater. Chinese J. Environ. Engin. 10(11), 6563–6570. DOI: 10.12030/j.cjee.201507027. Search in Google Scholar

27. Ma, S., Deng, Y., Wu, W., Tan, Y., Zhang, L., Chai, F., Sun, P. & Zhang, X. (2016). Corrosion Characteristics of Downstream Metal Material of Boiler System in Solution of By-product Ammonium Bisulfate from SCR Dinitrification. J. Chinese Society for Corrosion and Protection. 36(4), 335–342. DOI: 10.11902/1005.4537.2015.155. Search in Google Scholar

28. Li, J. & Zhang, G. (1992). Investigation of the Kinetics and Mechanism of Decomposition of Ammonium Hydrogen Sulfate. ACTA PHYSICO-CHIMICA SINICA. 8(1), 123–127. DOI: 10.3866/PKU.WHXB19920122.10.3866/PKU.WHXB19920122 Search in Google Scholar

29. Raisaku, K. & Kohei, U. (1970). Mechanism, kinetics, and equilibrium of thermal decomposition of ammonium sulfate. Ind. Eng. Chem. Process Des Develop. 9(4), 489–494.10.1021/i260036a001 Search in Google Scholar

30. Fan, Y. & Cao, F. (2011). Thermal Decomposition Kinetics of Ammonium Sulfate. J. Chem. Engin. Chin. Univ. 25(2), 341–346. DOI: 10.3969/j.issn.1003-9015.2011.02.028. Search in Google Scholar

31. Tang, H., Li, H., Yang, H., Lin, Z., Zhuang, K., Lu, Q. & Li, W. (2018). Research progress on the formation and decomposition mechanism of ammonium-sulfate salts in NH3--SCR technology. Chem. Ind. Engin. Progress. 37(3), 822–831. DOI: 10.16085/j.issn.1000-6613.2017-0797. Search in Google Scholar

eISSN:
1899-4741
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering