Accès libre

Experimental research on the volatilization and condensation of ammonium bisulfate as SCR byproduct

À propos de cet article

Citez

1. Wang, L.L., Yang, M., Wu, S.S., Huang, C.Y., Zhang, Q.W., Zhu, L., Yao, Y., He, J.L., Kong, F.H. & He, J. (2016). Difficulties and countermeasures of SCR denitrification system operation in ultra low emission situation. THERMAL POWER GENERATION. 45(12), 19–24. DOI: 10.19666/j. rlfd.201912286. Search in Google Scholar

2. Ma, S.C., Deng, Y., Wu, W.L., Zhang, L.N., Ma, J.X. & Zhang, X.N. (2016). Experimental research on characteristic of ABS formation in the process of SCR. J. Chinese Soc. Power Engin. 36(2), 143–150. DOI: 10.3969/j.issn.1674-7607.2016.02.010. Search in Google Scholar

3. Mark, A., Nan-Yu, T. & J.A., D. (2003). Density functional theory studies of mechanistic aspects of the SCR reaction on vanadium oxide catalysts. J. Catal. 213(2), 115–125. DOI: 10.1016/S0021-9517(02)00031-3.10.1016/S0021-9517(02)00031-3 Search in Google Scholar

4. Ya, J.S., H, S., Yu, H.Z, Hong, M.F., Ya, P.Z. & Lin, J.Y. (2016). Formation and decomposition of NH4HSO4 during selective catalytic reduction of NO with NH3 over V2O5-WO3/TiO2 catalysts. Fuel Proces. Technol. 150, 141–147. DOI: 10.1016/j. fuproc.2016.05.016.10.1016/j.fuproc.2016.05.016 Search in Google Scholar

5. Srivastava, R.K., Hall, R.E., Khan, S., Culligan, K. & Bruce, W.L. (2005). Nitrogen oxides emission control options for coal-fire delectric utility boiler. J. Air & Waste Manag. Assoc. 55, 1367–1388. DOI: 10.1080/10473289.2005.10464736.10.1080/10473289.2005.1046473616259432 Search in Google Scholar

6. Wang, Y.C. & Tang, G.H. (2016). Prediction of sulfuric acid dew point temperature on heat transfer fin surface. Appl. Thermal Engin. 98, 492–501. DOI: 10.1016/j.applthermaleng.2015.12.078.10.1016/j.applthermaleng.2015.12.078 Search in Google Scholar

7. Zhu, Y.Q., Zhou, W.H., Xia, C. & Hou, Q.C. (2022). Application and Development of Selective Catalytic Reduction Technology for Marine Low-Speed Diesel Engine: Trade-Off among High Sulfur Fuel, High Thermal Efficiency, and Low Pollution Emission. Atmosphere. 13, 1–21. DOI: 10.3390/atmos13050731.10.3390/atmos13050731 Search in Google Scholar

8. Zhou, C.Y., Zhang, L.N., Deng, Y. & Ma, S.C. (2016). Research progress on ammonium bisulfate formation and control in the process of selective catalytic reduction. Environ. Progress & Sustainable Energy. DOI: 10.1002/ep.12409.10.1002/ep.12409 Search in Google Scholar

9. Muzio, L., Bogseth, S., Himes, R., Chien, Y.C. & Rankin, D.D. (2017). Ammonium bisulfate formation and reduced load SCR operation. Fuel. 206, 180–189. DOI: 10.1016/j. fuel.2017.05.081.10.1016/j.fuel.2017.05.081 Search in Google Scholar

10. Liu, K.W. & Chen, T.L. (2002). Studies on the thermal decomposition of ammonium sulfate. Chem. Res. Applic. 14(6), 737–738. DOI: 10.3969/j.issn.1004-1656.2002.06.038. Search in Google Scholar

11. Wang, L.M., Bu, Y.F., Li, D.C., Tang, C.L. & Che, D.F. (2019). Single and multi-objective optimizations of rotary regenerative air preheater for coal-fired power plant considering the ammonium bisulfate deposition. Internat. J. Thermal Sci. 136, 52–59. DOI: 10.1016/j.ijthermalsci.2018.10.005.10.1016/j.ijthermalsci.2018.10.005 Search in Google Scholar

12. Zhao, H., Zhang, J.K. & Zhang, K. (2018). Investigation of the deposition characteristics of ammonium bisulfate and fly ash blend using an on-line digital image technique: Effect of deposition surface temperature. Fuel Proc. Technol. 179, 359–368. DOI: 10.1016/j.fuproc.2018.07.030.10.1016/j.fuproc.2018.07.030 Search in Google Scholar

13. Luo, M., Zhao, L.L. & Li, S.Y. (2016). Numerical simulation of ash deposition with adhesion of NH4HSO4 in an air preheater. Chin. Soc. Power Eng. 36, 883–888. DOI: 10.3969/j. issn.1674-7607.2016.11.005. Search in Google Scholar

14. Chen, H., Pan, P.Y., Wang, Y.G. & Zhao, Q.X. (2016). Field study on the corrosion and ash deposition of low-temperature heating surface in a large-scale coal-fired power plant. Fuel. 208, 149–159. DOI: 10.1016/j.fuel.2017.06.120.10.1016/j.fuel.2017.06.120 Search in Google Scholar

15. Wei, W., Sun, F.Z. & Ma, L. (2018). Effect of fine ash particles on formation mechanism of fouling covering heat exchangers in coal-fired power plants. Appl. Thermal Engin. 142, 269–277. DOI: 10.1016/j.applthermaleng.2018.06.086.10.1016/j.applthermaleng.2018.06.086 Search in Google Scholar

16. Chen, H., Pan, P.Y., Shao, H.S., Wang, Y.G. & Zhao, Q.X. (2017). Corrosion and viscous ash deposition of a rotary air preheater in a coal-fired power plant. Appl. Thermal Engin. 113, 373–385. DOI: 10.1016/j.applthermaleng.2016.10.160.10.1016/j.applthermaleng.2016.10.160 Search in Google Scholar

17. Bu, Y.F., Wang, L.M., Chen, X., Wei, X.Y., Deng, L. & Che, D.F. (2018). Numerical analysis of ABS deposition and corrosion on a rotary air preheater. Appl. Thermal Engin. 131, 669–677. DOI: 10.1016/j.applthermaleng.2017.11.082.10.1016/j.applthermaleng.2017.11.082 Search in Google Scholar

18. Cheng, M., Chen, Z., Liao, Q., Zhang, J., Ding, Y. & Zhu, X. (2019). Experimental research on the ash deposition characteristics of 3-D finned tube bundle. Appl. Thermal Engin. 153, 556–564. DOI: 10.1016/j.applthermaleng.2019.03.051.10.1016/j.applthermaleng.2019.03.051 Search in Google Scholar

19. Burke, J.M. & Johnson, K.L. (1982). Ammonium sul-fate and bisulfate formation in air preheaters. British Med. J. 329(7463), 446. Search in Google Scholar

20. Pan, L., Liu, Q.Y. & Zhenyu Liu. (2012). Behaviors of NH4HSO4 in SCR of NO by NH3 over different cokes. Chem. Engin. J. (181–182), 169–173. DOI: 10.1016/j.cej.2011.11.051.10.1016/j.cej.2011.11.051 Search in Google Scholar

21. Menasha, J., Dunn-Rankin, D., Muzio, L. & Stallings, J. (2011). Ammonium bisulfate formation temperature in a bench--scale single-channel air preheater. Fuel. 90, 2445–2453. DOI: 10.1016/j.fuel.2011.03.006.10.1016/j.fuel.2011.03.006 Search in Google Scholar

22. Zhu, Z.P., Niu, H.X., Liu, Z.Y. & Liu, S. (2000). Decomposition and Reactivity of NH4HSO4 on V2O5/AC Catalysts Used for NO Reduction with Ammonia. J. Catal. 195(2), 268–278. DOI: 10.1006/jcat.2000.2961.10.1006/jcat.2000.2961 Search in Google Scholar

23. Shu, H., Zhang, Y.H., Fan, H.M., Zhang, Y.P. & Yang, L. (2015). FT-IR study of formation and decomposition of ammonium bisulfates on surface of SCR catalyst for nitrogen removal. CIESC Journal. 66(11), 4460–4468. DOI: 10.11949/j. jssn.0438-1157.20150450. Search in Google Scholar

24. Ma, S., Jin, X., Sun, Y. & Cui, J. (2010). The formation mechanism of ammonium bisulfate in SCR flue gas denitrification process and control thereof. THERMAL POWER GENERATION. 39(8),12–17. DOI: 10.3969/j. issn.10022336.4.2010.08.012. Search in Google Scholar

25. Ma, S., Guo, M., Song, H., Chen, G., Yang, J., Zang, B. & Li, D. (2014). Formation mechanism and influencing factors of ammonium bisulfate during the selective catalytic reduction process. THERMAL POWER GENERATION. 43(2), 75–78, 86. DOI: 10.3969/j.issn.1002-3364.2014.02.075. Search in Google Scholar

26. Ma, S., Deng, Y., Wu, W. & Zhang, L. (2016). Reaction characteristic of by-product ammonium bisulfate from SCR denitrification and fly ash in air preheater. Chinese J. Environ. Engin. 10(11), 6563–6570. DOI: 10.12030/j.cjee.201507027. Search in Google Scholar

27. Ma, S., Deng, Y., Wu, W., Tan, Y., Zhang, L., Chai, F., Sun, P. & Zhang, X. (2016). Corrosion Characteristics of Downstream Metal Material of Boiler System in Solution of By-product Ammonium Bisulfate from SCR Dinitrification. J. Chinese Society for Corrosion and Protection. 36(4), 335–342. DOI: 10.11902/1005.4537.2015.155. Search in Google Scholar

28. Li, J. & Zhang, G. (1992). Investigation of the Kinetics and Mechanism of Decomposition of Ammonium Hydrogen Sulfate. ACTA PHYSICO-CHIMICA SINICA. 8(1), 123–127. DOI: 10.3866/PKU.WHXB19920122.10.3866/PKU.WHXB19920122 Search in Google Scholar

29. Raisaku, K. & Kohei, U. (1970). Mechanism, kinetics, and equilibrium of thermal decomposition of ammonium sulfate. Ind. Eng. Chem. Process Des Develop. 9(4), 489–494.10.1021/i260036a001 Search in Google Scholar

30. Fan, Y. & Cao, F. (2011). Thermal Decomposition Kinetics of Ammonium Sulfate. J. Chem. Engin. Chin. Univ. 25(2), 341–346. DOI: 10.3969/j.issn.1003-9015.2011.02.028. Search in Google Scholar

31. Tang, H., Li, H., Yang, H., Lin, Z., Zhuang, K., Lu, Q. & Li, W. (2018). Research progress on the formation and decomposition mechanism of ammonium-sulfate salts in NH3--SCR technology. Chem. Ind. Engin. Progress. 37(3), 822–831. DOI: 10.16085/j.issn.1000-6613.2017-0797. Search in Google Scholar

eISSN:
1899-4741
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering