Accesso libero

UV polymerization and property analysis of maleacylated methyl cellulose acrylic acid absorbent resin

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Shen, Y., Oki, T., Kanae, S., Hanasaki, N., Utsumi, N. & Kiguchi, M. (2014). Projection of future world water resources under sres scenarios: an integrated assessment. Hydrolog.. Sci. J. 59(10), 1775–1793. DOI: 10.1080/02626667.2013. 862338.Search in Google Scholar

2. Jiang, Y.L., Chen, Y.S., Younos, T., Huang, H.Q. & He, J.P. (2010). Urban water resources quota management: the core strategy for water demand management in china. Ambio. 39(7), 467–475. DOI: 10.1007/s13280-010-0080-x.10.1007/s13280-010-0080-x335766621090001Search in Google Scholar

3. Zhang, W., Zhou, J., Feng, G., Weindorf, D.C., Hu, G. & Sheng, J. (2015). Characteristics of water erosion and conservation practice in arid regions of Central Asia: Xinjiang Province, China as an example. J. Soil. Water. Conserw. 3(2), S2095633915300617. DOI: 10.1016/j.iswcr.2015.06.002.10.1016/j.iswcr.2015.06.002Search in Google Scholar

4. Wang, C.F., Li, X.F., Zhang, X.L., Ma, X.L. & Feng, M.X. (2019). Research progress on application of water retention agent in agricultural production. Modern Agric. Sci. Technol. 12. DOI: not given.Search in Google Scholar

5. Huo, Q., Liu, D., Zhao, J., Li, J., Chen, R. & Liu, S. (2017). Construction and water absorption capacity of a 3D network-structure starch-g-poly (sodium acrylate)/PVP semi--IPN superabsorbent resin. Starch. 69, 11–12. DOI: 10.1002/star. 201700091.Search in Google Scholar

6. Chen, Y., Liu, Y.F., Tan, H.M. & Jiang, J.X. (2009). Synthesis and characterization of a novel superabsorbent polymer of N, O - carboxymethyl chitosan graft copolymerized with vinyl monomers. Carbohydr. Polym.75(2), 287–292. DOI: 10.1016/j.car bpo l.2008.07.022.Search in Google Scholar

7. Bao, Y., Ma, J. & Li, N. (2011). Synthesis and swelling behaviors of sodium carboxymethyl cellulose-g-poly(AA-co-AM--co-AMPS)/MMT superabsorbent hydro-gel. Carbohydr. Polym. 84(1), 76–82. DOI: 10.1016/j.carbpol.2010.10.061.10.1016/j.carbpol.2010.10.061Search in Google Scholar

8. Lan, GH., Zhang, M., Liu, YQ., Qiu, H., Xue, S., Zhang, T. & Xu, Q. (2019). Synthesis and Swelling Behavior of Super-Absorbent Soluble Starch-g-poly (AM-co-NaAMC 14 S) Through Graft Copolymerization and Hydrolysis. Starch. 71, 1800272. DOI: 10.1002/star.201800272.10.1002/star.201800272Search in Google Scholar

9. Huacai, G., Wan, P. & Dengke, L. (2006). Graft copolymerization of chitosan with acrylic acid under microwave irradiation and its water absorbency. Carbohydr. Polym. 66(3), 372–378. DOI: 10.1016/j.carbpol.2006.03.017.10.1016/j.carbpol.2006.03.017Search in Google Scholar

10. Jian, Q., Marie, R.S., Niemeyer, M.J., Schueler, K.R., Hurley, S.M. & Sawyer, L.H. (2003). Patent No. EP1622654. Publ. of Application without search report – European Patent Office.Search in Google Scholar

11. Tang, Y., Wang, X. & Zhu, L. (2013). Removal of methyl orange from aqueous solutions with poly(acrylic acid-co-acrylamide) superabsorbent resin. Polym. Bull. 70(3), 905–918. DOI: 10.1007/s00289-013-0910-7.10.1007/s00289-013-0910-7Search in Google Scholar

12. Li, J., Zhang, K., Zhang, M., Fang, Y., Chu, X. & Xu, Lu. (2017). Fabrication of a fast:welling superabsorbent resin by inverse suspension polymerization. J. Appl. Polym. Sci. 135, 46142. DOI: 10.1002/app.46142.10.1002/app.46142Search in Google Scholar

13. Rashidzadeh, A. & Olad, A. (2014).Slow-released NPK fertilizer encapsulated by NaAlg -g- poly(AA- co -AAm)/MMT superabsorbent nanocomposite. Carbohydr. Polym.114, 269–278. DOI: 10.1016/j.carbpol.2014.08.010.10.1016/j.carbpol.2014.08.01025263891Search in Google Scholar

14. Gawande, N. & Mungray, A.A. (2015). Superabsorbent polymer (sap) hydrogels for protein enrichment. Sep. Purif. Technol. 150, 86–94. DOI: 10.1016/j.seppur.2015. 04.024.Search in Google Scholar

15. Lee, H.X.D., Wong, H.S. & Buenfeld, NR. (2016). Self-sealing of cracks in concrete using superabsorbent polymers. Cement. Concrete. Res. 79, 194–208. DOI: 10.1016/j. cemconres.2015.09.008.Search in Google Scholar

16. Peng, N., Wang, Y., Ye, Q., Liang, L., An, Y., Li, Q. & Chang, C. (2016). Biocompatible cellulose-based superabsorbent hydrogels with antimicrobial activity. Carbohydr. Polym. 137, 59–64. DOI: 10.1016/j.carbpol.2015.10.057.10.1016/j.carbpol.2015.10.05726686105Search in Google Scholar

17. Ganhui, H., Qianhui, G.U. & Zhenyu, G.U. (2012). Optimization on preparation technology of super absorbent resin polymerized by microwave with gelatinized starch from canna edulis ker and acrylic acid through response surface methodology. Food Sci. 33(10), 124–130.DOI: not given.Search in Google Scholar

18. Blaker, J.J., Lee, K.Y. & Bismarck, A. (2011). Hierarchical composites made entirely from renewable resources. J. Biobased Mater. Bio. 5(1), 1–16. DOI: 10.1166/jbmb.2011.1113.10.1166/jbmb.2011.1113Search in Google Scholar

19. Lam, Y.C., Joshi, S.C. & Tan, B.K. (2007). Thermodynamic characteristics of gelation for methyl-cellulose hydrogel S. J. Therm. Anal. Cal. 87(2), 475–482. DOI: 10.1007/s10973-006-772 2-z.Search in Google Scholar

20. Fang, Z., Zhang, X., Xia, M., Luo, W., Hu, H.,Wang, Z., He, P. & Zhang, Y. (2018). The role of synthetic P (MMA-co-MAH) as compatibilizer in the preparation of chlorinated polyethylene/polysodium acrylate water-swelling rubber. Adv. Polym. Tech. 37, 3650–3658. DOI: 10.1002/adv.22149.10.1002/adv.22149Search in Google Scholar

21. Roy, D., Semsarilar, M., Guthrie, J. & Perrier, S. (2009). Cellulose modification by polymer grafting: a review. Chem. Soc. Rev. 38(7), 2046–2064. DOI: 10.1039/b 808639g.Search in Google Scholar

22. Yimit, M., Sawut, A., Nurulla, I., Shi, Q.D. & Xu, W.T. (2016). UV polymerization and characterization of self-crosslinking polyacrylic acid super-absorbent. J. Funct. Mater. 4(47), 04182–04186. DOI: 10.3969/j.issn.100-9731. 2016.04.037.Search in Google Scholar

23. Cheng, D.D., Liu, Y., Yang, G.T. & Zhang, A.P. (2018). Water- and Fertilizer-Integrated Hydrogel Derived from the Polymerization of Acrylic Acid and Urea as a Slow-Release N Fertilizer and Water Retention in Agriculture. J. Agric. Food Chem. 66, 5762−5769. DOI: 10.1021/acs.jafc.8b00872.10.1021/acs.jafc.8b0087229782162Search in Google Scholar

24. Hisham A., E., Ghazy, M.B.M., Mohamed, M.F. & El-Hai, F.A. (2016). Super-absorbent hydrogels via graft polymerization of acrylic acid from chitosan-cellulose hybrid and their potential in controlled release of soil nutrients. Internat. J. Biolog. Macromolec. 89, 144–151. DOI: 10.1016/j.ijbiomac.2016.04.071..Search in Google Scholar

25. Shi, Q., Meng, Q.L. & Wang, N. (2014). The Preparation of Calcium Carbonate Modified High Water-Absorbing Resin. Adv. Mater. Res. 1035, 296–302. DOI: 10.4028/www.scientific.net/amr.1035.296.10.4028/www.scientific.net/AMR.1035.296Search in Google Scholar

26. Zhang, H.N., Ren, H., Qian, S. & Zhai, H. (2019). Effects of different lignins on absorption properties and pore structure of polyacrylic acid resin. Wood Sci. Technol. 53, 1001–1014. DOI: 10.1007/s00226-019-01116-w.10.1007/s00226-019-01116-wSearch in Google Scholar

27. OU, S.J. (2014). The synthesis of maleic anhydride-acrylic salt tolerance of super water-absorbent resin. Appl. Chem. Ind. 43(4), 670–672. DOI: 10. 16581/j.cnki.issn1671-3206.2014.04.025.Search in Google Scholar

28. Sawut, A., Yimit, M., Wanfu, S. & Nurulla, I. (2014). Photopolymerisation and characterization of maleylatedcellu-lose-g-poly(acrylic acid) superabsorbent polymer. Carbohydr. Polym. 101, 231–239. DOI: 10.1016/j.carbpol.2013.09.054.10.1016/j.carbpol.2013.09.05424299769Search in Google Scholar

29. Liu, L., Sawut, A., Abliz, S., Nurulla, I., Dolat, B. & Yimit, M. (2016). Ultraviolet-induced polymerization of super-absorbent composites based on sodium humate and its urea release behavior. RSC. Adv. 6, 101123–101132. DOI: 10.1039/c6 ra21911j.Search in Google Scholar

30. de Carvalho Oliveira, G., Filho, G.R., Vieira, J.G., De Assunção, R.M.N., da Silva Meireles, C., Cerqueira, D.A., de Oliveira, R.J., Silva, W.G. & de Castro Motta, L.A. (2010). Synthesis and application of methylcellulose extracted from waste newspaper in cpv-ari portland cement mortars. J. Appl. Polym. Sci. 118(3), 1380–1385. DOI: 10.1002/app.32477.10.1002/app.32477Search in Google Scholar

31. Li, L., Chu, L.K., Huang, W.H., Yue, L. & Yang, Z.S. (2014). Radiation synthesis and the post-processing of a new salt resistance SAR. Nuclear Techniques. 37(7), 070301. DOI: 10.11889/j.0253-3219.2014.hjs.37.070301.Search in Google Scholar

32. Song, X.F., Zhang, D. & He, T.S.(2012).Synthesis and Characterization of Water Absorbent Resin of Poly(AA-AANa--AM) with Redox Initiation System. J. Building Mater. 15(4), 0494–0497. DOI: 10.3969/j. issn.1007-9629.2012. 04.011.Search in Google Scholar

33. Dolat, B., Sawut, A., Yimit, M. & Nurulla, I. (2015). Ultraviolet photopolymeri-zation and performances of fast-water absorbing sodium polyacrylate. J. Appl. Polym. Sci. 132(46), 1–6. DOI: 10.1002/app.42787.10.1002/app.42787Search in Google Scholar

34. Tian, Y.C., Zhao, M.Q., Mi, H.Y., Li, G.Y. & Nurulla, I. (2012). Synthesis of acrylic acid-polyethylene glycol-humic acid composite water absorbent resin. China Synthetic Resin Plastics, 29(6),71–76. DOI: not given.Search in Google Scholar

35. Bao, Y., Ma, J.Z. & Li, N.(2010). Synthesis and swelling behaviors of sodium carboxymethyl cellulose-g-poly(AA-co--AM-co-AMPS)/MMT superabsorbent hydro-gel. Carbohydr. Polym. 84 (2011), 76–82. DOI: 10.1016/j.carbpol.2010.10.061.10.1016/j.carbpol.2010.10.061Search in Google Scholar

36. Zhang, P., Liang, J.F., Xie, J.J. & Liu, X.R. (2007). The influence of pH value on the absorbent property of super absorbent resin (acrylate – acrylamide). Natural Sci. J. Xiangtan Univ. 29(4), 63–66. DOI: 10.13715/j.cnki. nsjxu. 2007.04.010.Search in Google Scholar

37. Tian, Y.C., Li, G.Y. & Nurulla, I.(2013). Synthesis of acrylic acid-starch-humic acid absorbent resin. China Synthetic Resin Plastics, 30(2), 42–47. DOI: not given.Search in Google Scholar

38. Rashidzadeh, A., Olad, A., Salari, D. & Reyhanitabar, A. (2014). On the preparation and swelling properties of hydrogel nanocomposite based on Sodium alginate-g-Poly(acrylic acid-co-acrylamide)/Clinoptilolite and its application as slow release fertilizer. J. Polym. Res. 21, 344. DOI: 10.1007/s10965-013-0344-9.10.1007/s10965-013-0344-9Search in Google Scholar

eISSN:
1899-4741
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering