Uneingeschränkter Zugang

UV polymerization and property analysis of maleacylated methyl cellulose acrylic acid absorbent resin


Zitieren

1. Shen, Y., Oki, T., Kanae, S., Hanasaki, N., Utsumi, N. & Kiguchi, M. (2014). Projection of future world water resources under sres scenarios: an integrated assessment. Hydrolog.. Sci. J. 59(10), 1775–1793. DOI: 10.1080/02626667.2013. 862338.Search in Google Scholar

2. Jiang, Y.L., Chen, Y.S., Younos, T., Huang, H.Q. & He, J.P. (2010). Urban water resources quota management: the core strategy for water demand management in china. Ambio. 39(7), 467–475. DOI: 10.1007/s13280-010-0080-x.10.1007/s13280-010-0080-x335766621090001Search in Google Scholar

3. Zhang, W., Zhou, J., Feng, G., Weindorf, D.C., Hu, G. & Sheng, J. (2015). Characteristics of water erosion and conservation practice in arid regions of Central Asia: Xinjiang Province, China as an example. J. Soil. Water. Conserw. 3(2), S2095633915300617. DOI: 10.1016/j.iswcr.2015.06.002.10.1016/j.iswcr.2015.06.002Search in Google Scholar

4. Wang, C.F., Li, X.F., Zhang, X.L., Ma, X.L. & Feng, M.X. (2019). Research progress on application of water retention agent in agricultural production. Modern Agric. Sci. Technol. 12. DOI: not given.Search in Google Scholar

5. Huo, Q., Liu, D., Zhao, J., Li, J., Chen, R. & Liu, S. (2017). Construction and water absorption capacity of a 3D network-structure starch-g-poly (sodium acrylate)/PVP semi--IPN superabsorbent resin. Starch. 69, 11–12. DOI: 10.1002/star. 201700091.Search in Google Scholar

6. Chen, Y., Liu, Y.F., Tan, H.M. & Jiang, J.X. (2009). Synthesis and characterization of a novel superabsorbent polymer of N, O - carboxymethyl chitosan graft copolymerized with vinyl monomers. Carbohydr. Polym.75(2), 287–292. DOI: 10.1016/j.car bpo l.2008.07.022.Search in Google Scholar

7. Bao, Y., Ma, J. & Li, N. (2011). Synthesis and swelling behaviors of sodium carboxymethyl cellulose-g-poly(AA-co-AM--co-AMPS)/MMT superabsorbent hydro-gel. Carbohydr. Polym. 84(1), 76–82. DOI: 10.1016/j.carbpol.2010.10.061.10.1016/j.carbpol.2010.10.061Search in Google Scholar

8. Lan, GH., Zhang, M., Liu, YQ., Qiu, H., Xue, S., Zhang, T. & Xu, Q. (2019). Synthesis and Swelling Behavior of Super-Absorbent Soluble Starch-g-poly (AM-co-NaAMC 14 S) Through Graft Copolymerization and Hydrolysis. Starch. 71, 1800272. DOI: 10.1002/star.201800272.10.1002/star.201800272Search in Google Scholar

9. Huacai, G., Wan, P. & Dengke, L. (2006). Graft copolymerization of chitosan with acrylic acid under microwave irradiation and its water absorbency. Carbohydr. Polym. 66(3), 372–378. DOI: 10.1016/j.carbpol.2006.03.017.10.1016/j.carbpol.2006.03.017Search in Google Scholar

10. Jian, Q., Marie, R.S., Niemeyer, M.J., Schueler, K.R., Hurley, S.M. & Sawyer, L.H. (2003). Patent No. EP1622654. Publ. of Application without search report – European Patent Office.Search in Google Scholar

11. Tang, Y., Wang, X. & Zhu, L. (2013). Removal of methyl orange from aqueous solutions with poly(acrylic acid-co-acrylamide) superabsorbent resin. Polym. Bull. 70(3), 905–918. DOI: 10.1007/s00289-013-0910-7.10.1007/s00289-013-0910-7Search in Google Scholar

12. Li, J., Zhang, K., Zhang, M., Fang, Y., Chu, X. & Xu, Lu. (2017). Fabrication of a fast:welling superabsorbent resin by inverse suspension polymerization. J. Appl. Polym. Sci. 135, 46142. DOI: 10.1002/app.46142.10.1002/app.46142Search in Google Scholar

13. Rashidzadeh, A. & Olad, A. (2014).Slow-released NPK fertilizer encapsulated by NaAlg -g- poly(AA- co -AAm)/MMT superabsorbent nanocomposite. Carbohydr. Polym.114, 269–278. DOI: 10.1016/j.carbpol.2014.08.010.10.1016/j.carbpol.2014.08.01025263891Search in Google Scholar

14. Gawande, N. & Mungray, A.A. (2015). Superabsorbent polymer (sap) hydrogels for protein enrichment. Sep. Purif. Technol. 150, 86–94. DOI: 10.1016/j.seppur.2015. 04.024.Search in Google Scholar

15. Lee, H.X.D., Wong, H.S. & Buenfeld, NR. (2016). Self-sealing of cracks in concrete using superabsorbent polymers. Cement. Concrete. Res. 79, 194–208. DOI: 10.1016/j. cemconres.2015.09.008.Search in Google Scholar

16. Peng, N., Wang, Y., Ye, Q., Liang, L., An, Y., Li, Q. & Chang, C. (2016). Biocompatible cellulose-based superabsorbent hydrogels with antimicrobial activity. Carbohydr. Polym. 137, 59–64. DOI: 10.1016/j.carbpol.2015.10.057.10.1016/j.carbpol.2015.10.05726686105Search in Google Scholar

17. Ganhui, H., Qianhui, G.U. & Zhenyu, G.U. (2012). Optimization on preparation technology of super absorbent resin polymerized by microwave with gelatinized starch from canna edulis ker and acrylic acid through response surface methodology. Food Sci. 33(10), 124–130.DOI: not given.Search in Google Scholar

18. Blaker, J.J., Lee, K.Y. & Bismarck, A. (2011). Hierarchical composites made entirely from renewable resources. J. Biobased Mater. Bio. 5(1), 1–16. DOI: 10.1166/jbmb.2011.1113.10.1166/jbmb.2011.1113Search in Google Scholar

19. Lam, Y.C., Joshi, S.C. & Tan, B.K. (2007). Thermodynamic characteristics of gelation for methyl-cellulose hydrogel S. J. Therm. Anal. Cal. 87(2), 475–482. DOI: 10.1007/s10973-006-772 2-z.Search in Google Scholar

20. Fang, Z., Zhang, X., Xia, M., Luo, W., Hu, H.,Wang, Z., He, P. & Zhang, Y. (2018). The role of synthetic P (MMA-co-MAH) as compatibilizer in the preparation of chlorinated polyethylene/polysodium acrylate water-swelling rubber. Adv. Polym. Tech. 37, 3650–3658. DOI: 10.1002/adv.22149.10.1002/adv.22149Search in Google Scholar

21. Roy, D., Semsarilar, M., Guthrie, J. & Perrier, S. (2009). Cellulose modification by polymer grafting: a review. Chem. Soc. Rev. 38(7), 2046–2064. DOI: 10.1039/b 808639g.Search in Google Scholar

22. Yimit, M., Sawut, A., Nurulla, I., Shi, Q.D. & Xu, W.T. (2016). UV polymerization and characterization of self-crosslinking polyacrylic acid super-absorbent. J. Funct. Mater. 4(47), 04182–04186. DOI: 10.3969/j.issn.100-9731. 2016.04.037.Search in Google Scholar

23. Cheng, D.D., Liu, Y., Yang, G.T. & Zhang, A.P. (2018). Water- and Fertilizer-Integrated Hydrogel Derived from the Polymerization of Acrylic Acid and Urea as a Slow-Release N Fertilizer and Water Retention in Agriculture. J. Agric. Food Chem. 66, 5762−5769. DOI: 10.1021/acs.jafc.8b00872.10.1021/acs.jafc.8b0087229782162Search in Google Scholar

24. Hisham A., E., Ghazy, M.B.M., Mohamed, M.F. & El-Hai, F.A. (2016). Super-absorbent hydrogels via graft polymerization of acrylic acid from chitosan-cellulose hybrid and their potential in controlled release of soil nutrients. Internat. J. Biolog. Macromolec. 89, 144–151. DOI: 10.1016/j.ijbiomac.2016.04.071..Search in Google Scholar

25. Shi, Q., Meng, Q.L. & Wang, N. (2014). The Preparation of Calcium Carbonate Modified High Water-Absorbing Resin. Adv. Mater. Res. 1035, 296–302. DOI: 10.4028/www.scientific.net/amr.1035.296.10.4028/www.scientific.net/AMR.1035.296Search in Google Scholar

26. Zhang, H.N., Ren, H., Qian, S. & Zhai, H. (2019). Effects of different lignins on absorption properties and pore structure of polyacrylic acid resin. Wood Sci. Technol. 53, 1001–1014. DOI: 10.1007/s00226-019-01116-w.10.1007/s00226-019-01116-wSearch in Google Scholar

27. OU, S.J. (2014). The synthesis of maleic anhydride-acrylic salt tolerance of super water-absorbent resin. Appl. Chem. Ind. 43(4), 670–672. DOI: 10. 16581/j.cnki.issn1671-3206.2014.04.025.Search in Google Scholar

28. Sawut, A., Yimit, M., Wanfu, S. & Nurulla, I. (2014). Photopolymerisation and characterization of maleylatedcellu-lose-g-poly(acrylic acid) superabsorbent polymer. Carbohydr. Polym. 101, 231–239. DOI: 10.1016/j.carbpol.2013.09.054.10.1016/j.carbpol.2013.09.05424299769Search in Google Scholar

29. Liu, L., Sawut, A., Abliz, S., Nurulla, I., Dolat, B. & Yimit, M. (2016). Ultraviolet-induced polymerization of super-absorbent composites based on sodium humate and its urea release behavior. RSC. Adv. 6, 101123–101132. DOI: 10.1039/c6 ra21911j.Search in Google Scholar

30. de Carvalho Oliveira, G., Filho, G.R., Vieira, J.G., De Assunção, R.M.N., da Silva Meireles, C., Cerqueira, D.A., de Oliveira, R.J., Silva, W.G. & de Castro Motta, L.A. (2010). Synthesis and application of methylcellulose extracted from waste newspaper in cpv-ari portland cement mortars. J. Appl. Polym. Sci. 118(3), 1380–1385. DOI: 10.1002/app.32477.10.1002/app.32477Search in Google Scholar

31. Li, L., Chu, L.K., Huang, W.H., Yue, L. & Yang, Z.S. (2014). Radiation synthesis and the post-processing of a new salt resistance SAR. Nuclear Techniques. 37(7), 070301. DOI: 10.11889/j.0253-3219.2014.hjs.37.070301.Search in Google Scholar

32. Song, X.F., Zhang, D. & He, T.S.(2012).Synthesis and Characterization of Water Absorbent Resin of Poly(AA-AANa--AM) with Redox Initiation System. J. Building Mater. 15(4), 0494–0497. DOI: 10.3969/j. issn.1007-9629.2012. 04.011.Search in Google Scholar

33. Dolat, B., Sawut, A., Yimit, M. & Nurulla, I. (2015). Ultraviolet photopolymeri-zation and performances of fast-water absorbing sodium polyacrylate. J. Appl. Polym. Sci. 132(46), 1–6. DOI: 10.1002/app.42787.10.1002/app.42787Search in Google Scholar

34. Tian, Y.C., Zhao, M.Q., Mi, H.Y., Li, G.Y. & Nurulla, I. (2012). Synthesis of acrylic acid-polyethylene glycol-humic acid composite water absorbent resin. China Synthetic Resin Plastics, 29(6),71–76. DOI: not given.Search in Google Scholar

35. Bao, Y., Ma, J.Z. & Li, N.(2010). Synthesis and swelling behaviors of sodium carboxymethyl cellulose-g-poly(AA-co--AM-co-AMPS)/MMT superabsorbent hydro-gel. Carbohydr. Polym. 84 (2011), 76–82. DOI: 10.1016/j.carbpol.2010.10.061.10.1016/j.carbpol.2010.10.061Search in Google Scholar

36. Zhang, P., Liang, J.F., Xie, J.J. & Liu, X.R. (2007). The influence of pH value on the absorbent property of super absorbent resin (acrylate – acrylamide). Natural Sci. J. Xiangtan Univ. 29(4), 63–66. DOI: 10.13715/j.cnki. nsjxu. 2007.04.010.Search in Google Scholar

37. Tian, Y.C., Li, G.Y. & Nurulla, I.(2013). Synthesis of acrylic acid-starch-humic acid absorbent resin. China Synthetic Resin Plastics, 30(2), 42–47. DOI: not given.Search in Google Scholar

38. Rashidzadeh, A., Olad, A., Salari, D. & Reyhanitabar, A. (2014). On the preparation and swelling properties of hydrogel nanocomposite based on Sodium alginate-g-Poly(acrylic acid-co-acrylamide)/Clinoptilolite and its application as slow release fertilizer. J. Polym. Res. 21, 344. DOI: 10.1007/s10965-013-0344-9.10.1007/s10965-013-0344-9Search in Google Scholar

eISSN:
1899-4741
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Industrielle Chemie, Biotechnologie, Chemieingenieurwesen, Verfahrenstechnik