Accesso libero

Numerical analysis of a serial connection of two staged SOFC stacks in a CHP system fed by methane using Aspen TECH

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Buonomano, A., Calise, F., d’Accadia, M.D., Palombo, A. & Vicidomini, M. (2015). Hybrid solid oxide fuel cells – gas turbine systems for combined heat and power: a review, Applied Energy, 156, 32–85. DOI: 10.1016/j.apenergy.2015.06.027.10.1016/j.apenergy.2015.06.027Open DOISearch in Google Scholar

2. Araki, T., Ohba, T., Takezawa, S., Onda, K. & Sakaki, Y. (2006). Cycle analysis of planar SOFC power generation with serial connection of low and high temperature SOFCs, J. Power Sourc. 158, 52–59. DOI: 10.1016/j.jpowsour.2005.09.003.10.1016/j.jpowsour.2005.09.003Open DOISearch in Google Scholar

3. Musa, A. & De Paepe, M. (2008). Performance of combined internally reformed intermediate/high temperature SOFC cycle compared to internally reformed two-staged intermediate temperature SOFC cycle, International J. Hydrog. Energy, 33, 4665–4672. DOI: 10.1016/j.ijhydene.2008.05.093.10.1016/j.ijhydene.2008.05.093Open DOISearch in Google Scholar

4. Mushtaq, U., Kim, D.W., Yun, U.J., Lee, J.W., Lee, S.B., Park, S.J., Song, R.H., Kim, G. & Lim, T.H. (2015). Effect of cathode geometry on the electrochemical performance of flat tubular segmented in series (SIS) solid oxide fuel cell, International J. Hydrog. Energy, 40, 6207–6215. DOI: 10.1016/j.ijhydene.2015.03.040.10.1016/j.ijhydene.2015.03.040Open DOISearch in Google Scholar

5. An, Y.T., Ji, M.J., Seol, K.H., Hwang, H.J., Parck, E. & Choi, B.H. (2014). Characteristics of flat tubular ceramic supported segmented in series solid oxide fuel cell on all sides laminating using decalcomania method, J. Power Sourc. 262, 323–327. DOI: 10.1016/j/jpowsour.2014.03.136.10.1016/j/jpowsour.2014.03.136Open DOISearch in Google Scholar

6. Ding, J. & Liu, J. (2009). A novel design and performance of cone shaped tubular anode supported segmented in series solid oxide fuel cell stack, J. Power Sourc. 193, 769–773. DOI: 10.1016/j.jpowsour.2009.04.049.10.1016/j.jpowsour.2009.04.049Open DOISearch in Google Scholar

7. Bai, Y., Wang, Ch., Ding, J., Jin, Ch. & Liu, J. (2010). Direct operation of cone shaped anode supported segmented in series solid oxide fuel cell stack with methane, J. Power Sourc. 195, 3882–3886. DOI: 10.1016/j.jpowsour.2009.12.110.10.1016/j.jpowsour.2009.12.110Open DOISearch in Google Scholar

8. Fujita, K., Seyama, T., Sobue, T. & Matsuzaki, Y. (2012). Development of segmented in series type solid oxide fuel cells for residentiaon applications, Energy Procedia, 28, 153–161. DOI: 10.1016/j.egypro.2012.08.049.10.1016/j.egypro.2012.08.049Search in Google Scholar

9. Kupecki, J., Skrzypkiewicz, M., Wierzbicki, M. & Stepien, M. (2017). Experimental and numerical analysis of a serial connection of two SOFC stacks in a micro-CHP system fed by biogas, International J. Hydrog. Energy, 42, 3487–3497. DOI: 10.1016/j.ijhydene.2016.07.222.10.1016/j.ijhydene.2016.07.222Open DOISearch in Google Scholar

10. Anyenya, G.A., Sullivan, N.P., Braun, R.J. (2017). Modeling and simulation of a novel 4.5 kWe multi-stack solid oxide fuel cell prototype assembly for combined heat and power, Energy Conversion and Management, 140, 247–259. DOI: 10.1016/j.enconman.2017.02.071.10.1016/j.enconman.2017.02.071Search in Google Scholar

11. Posdziech, O. System concepts and BoP components, Staxera/sunfire GmBH, http://slideplayer.com/slide/8883912/Search in Google Scholar

12. Schimanke, D., Posdziech, O., Mai, B.E., Kluge, S., Strohbach, T. & Wunderlich, Ch. (2011). Demonstration of a highly efficient SOFC system with Combined Partial Oxidation and Steam Reforming, ECS Transactions, 35, 1, 231–242. DOI: 10.1149/1.3569998.10.1149/1.3569998Open DOISearch in Google Scholar

13. Minutilloa, M., Perna, A. & Jannelli, E. (2014). SOFC and MCFC system level modeling for hybrid plants performance prediction, International J. Hydrog. Energy, 39, 21688–21699. DOI: 10.1016/j.ijhydene.2014.09.082.10.1016/j.ijhydene.2014.09.082Open DOISearch in Google Scholar

14. Cali, M., Santarelli, M.G.L. & Leone, P. (2006). Computer experimental analysis of the CHP performance of a 100 kWe SOFC Field Unit by a factorial design, J. Power Sourc. 156, 400–413. DOI: 10.1016/j.jpowsour.2005.06.033.10.1016/j.jpowsour.2005.06.033Open DOISearch in Google Scholar

15. Chan, S.H., Khor, K.A. & Xia, Z.T. (2000). A complete polarization model of a solid oxide fuel cell and its sensitivity to the change of cell component thickness, J. Power Sourc. 93, 130–140. DOI: 1016/S0378-7753(00)00556-5.10.1016/S0378-7753(00)00556-5Search in Google Scholar

16. Akkaya, A.V. (2006). Electrochemical model for performance analysis of a tubular SOFC, International J. Energy Res., 31, 79–98. DOI: 10.1002/er.1238,10.1002/er.1238Open DOISearch in Google Scholar

17. Kakac, S., Pramuanjaroenkij, A. & Zhou, X.Y. (2007). A review of numerical modeling of Solid Oxide Fuel Cells, International J. Hydrog. Energ. 32, 761–786. DOI: 10.1016/j.ijhydene.2006.11.028.10.1016/j.ijhydene.2006.11.028Open DOISearch in Google Scholar

18. Bachman, J., Posdziech, O., Pianko-Oprych, P., Kaisalo, N. & Pennanen, J. (2017). Development and testing of innovative SOFC system prototype with staged stack connection for efficient stationary power and heat generation, ECS Transactions, 78, 1, 133–144. DOI: 10.11490/07801.0133ecst.10.1149/07801.0133ecstSearch in Google Scholar

eISSN:
1899-4741
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering