Accesso libero

Effects of processing parameters on the properties of amphiphilic block copolymer micelles prepared by supercritical carbon dioxide evaporation method

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Yang, X.Y., Zhang, X.Y., Liu, Z.F., Ma, Y.F., Huang, Y. & Chen, Y. (2008). High-Efficiency Loading and Controlled Release of Doxorubicin Hydrochloride on Graphene Oxide. J. Phys. Chem. C 112, 17554–17558. DOI: 10.1021/jp806751k.10.1021/jp806751kOpen DOISearch in Google Scholar

2. Chen, M.X., Li, B.K., Yin, D.K., Liang, J., Li, S.S. & Peng, D.Y. (2014). Layer-by-layer Assembly of Chitosan Stabilized Multilayered Liposomes for Paclitaxel Delivery. Carbohydr. Polym. 111, 298–304. DOI: 10.1016/j.carbpol.2014.04.038.10.1016/j.carbpol.2014.04.038Open DOISearch in Google Scholar

3. Sugahara, K.N., Teesalu, T., Karmali, P.P., Kotamraju, V.R., Agemy, L., Greenwald, D.R. & Ruoslahti, E. (2010). Coadministration of a Tumor-Penetrating Peptide Enhances the Efficacy of Cancer Drugs. Science 328, 1031–1035. DOI: 10.1126/science.1183057.10.1126/.1183057Open DOISearch in Google Scholar

4. Ferrari, M. (2005). Cancer Nanotechnology: Opportunities and Challenges. Nat. Rev. Cancer 5, 161–171. DOI: 10.1038/nrc1566.10.1038/nrc1566Open DOISearch in Google Scholar

5. Jin, J., Lee, W.S., Joo, K.M., Maiti, K.K., Biswas, G., Kim, W., Kim, K.T., Lee, S.J., Kim, K.H., Nam, D.H. & Chung, S.K. (2011). Preparation of Blood-brain Barrier-permeable Paclitaxel-carrier Conjugate and Its Chemotherapeutic Activity in The Mouse Glioblastoma Model. Med. Chem. Comm. 2, 270–273. DOI: 10.1039/c0md00235f.10.1039/c0md00235fOpen DOISearch in Google Scholar

6. Brannon-Peppas, L. & Blanchette, J.O. (2004). Nanoparticle and Targeted Systems for Cancer Therapy. Adv. Drug. Deliv. Rev. 64, 206–212. DOI: 10.1016/j.addr.2012.09.033.10.1016/j.addr.2012.09.033Open DOISearch in Google Scholar

7. Torchilin, V.P. (2007). Micellar nanocarriers: Pharmaceutical Perspectives. Pharm. Res. 24, 1–16. DOI: 10.1007/s11095-006-9132-0.10.1007/s11095-006-9132-0Open DOISearch in Google Scholar

8. Kataoka, K., Harada, A. & Nagasaki, Y. (2001). Block Copolymer Micelles for Drug Delivery: Design, Characterization and Biological Significance. Adv. Drug Deliv. Rev. 47, 113–131. DOI: 10.1016/S0169-409X(00)00124-1.10.1016/S0169-409X(00)00124-1Search in Google Scholar

9. Yang, Y., Pan, D., Luo, K., Li, L. & Gu, Z. (2013). Biodegradable and amphiphilic block copolymer-doxorubicin conjugate as polymeric nanoscale drug delivery vehicle for breast cancer therapy. Biomaterials 34, 8430–8443. DOI: 10.1016/j.biomaterials.2013.07.037.10.1016/j.biomaterials.2013.07.037Open DOISearch in Google Scholar

10. Li, N., Li, N., Yi, Q., Luo, K., Guo, C., Pan, D. & Gu, Z. (2014). Amphiphilic peptide dendritic copolymer-doxorubicin nanoscale conjugate self-assembled to enzyme-responsive anti-cancer agent, Biomaterials, 35, 9529–9545. DOI: 10.1016/j.biomaterials.2014.07.059.10.1016/j.biomaterials.2014.07.059Search in Google Scholar

11. Li, N., Guo, C., Duan, Z., Yu, L., Luo, K., Lu, J. & Gu, Z. (2016). A stimuli-responsive Janus peptide dendron-drug conjugate as a safe and nanoscale drug delivery vehicle for breast cancer therapy. J. Mater. Chem. B, 4, 3760–3769. DOI: 10.1039/c6tb00688d.10.1039/C6TB00688DOpen DOISearch in Google Scholar

12. Li, N., Cai, H., Jiang, L., Hu, J., Bains, A., Hu, J., Gong, Q., Luo, K. & Gu, Z. (2017). Enzyme-Sensitive and Amphiphilic PEGylated Dendrimer-Paclitaxel Prodrug-Based Nanoparticles for Enhanced Stability and Anticancer Efficacy ACS Appl. Mater. Inter. 9, 6865–6877. DOI: 10.1021/acsami.6b15505.10.1021/acsami.6b15505Open DOISearch in Google Scholar

13. Duan, Z.Y., Zhang, Y.H., Zhu, H.Y., Sun, L., Cai, H., Li, B.J., Gong, Q.Y., Gu, Z. W. & Luo, K. (2017). Stimuli-Sensitive Biodegradable and Amphiphilic Block Copolymer-Gemcitabine Conjugates Self-Assemble into a Nanoscale Vehicle for Cancer Therapy, ACS Appl. Mater. Inter. 9, 3474–3486. DOI: 10.1021/acsami.6b15232.10.1021/acsami.6b15232Open DOISearch in Google Scholar

14. Torchilin, V.P. (2001). Structure and Design of Polymeric Surfactant-based Drug Delivery Systems, J. Control. Release 73, 137–172. DOI: 10.1016/S0168-3659(01)00299-1.10.1016/S0168-3659(01)00299-1Open DOISearch in Google Scholar

15. Riess, G. (2003). Micellization of Block Copolymers. Prog. Polym. Sci. 28, 1107–1170. DOI: 10.1016/S0079-6700(03)00015-7.10.1016/S0079-6700(03)00015-7Open DOISearch in Google Scholar

16. Tucker, B.S. & Sumerlin, B.S. (2014). Poly(N-(2-hydroxypropyl) methacrylamide)-based Nanotherapeutics. Polym. Chem. 5, 1566–1572. DOI: 10.1039/C3PY01279D.10.1039/C3PY01279Open DOISearch in Google Scholar

17. Gaucher, G., Marchessault, R.H. & Leroux, J.C. (2010). Polyester-based Micelles and Nanoparticles for the Parenteral Delivery of Taxanes. J. Control. Release 143, 2–12. DOI: 10.1016/j.jconrel.2009.11.012.10.1016/j.jconrel.2009.11.012Open DOISearch in Google Scholar

18. Odonnell, P.B. & McGinity, J.W. (1997). Preparation of Microspheres by the Solvent Evaporation Technique. Adv. Drug. Deliv. Rev. 28, 25–42. DOI: 10.1016/S0169-409X(97)00049-5.10.1016/S0169-409X(97)00049-5Open DOISearch in Google Scholar

19. Blackburn, J.M., Long, D.P., Cabanas, A. & Watkins, J.J. (2001). Deposition of Conformal Copper and Nickel Films From Supercritical Carbon Dioxide. Science 294, 141–145. DOI: 10.1126/science.1064148.10.1126/.1064148Open DOISearch in Google Scholar

20. Darr, J.A. & Poliakoff, M. (1999). New Directions in Inorganic and Metal-organic Coordination Chemistry in Supercritical Fluids. Chem. Rev. 99, 495–541. DOI: 10.1021/cr970036i.10.1021/cr970036iOpen DOISearch in Google Scholar

21. Pham, Q.L., Nguyen, V.H., Haldorai, Y. & Shim, J.J. (2013). Polymerization of Vinyl Pivalate in Supercritical Carbon Dioxide and the Saponification for the Preparation of Syndiotacticity-rich Poly(vinyl alcohol). Korean J. Chem. Eng. 30, 1153–1161. DOI: 10.1007/s11814-013-0019-6.10.1007/s11814-013-0019-6Open DOISearch in Google Scholar

22. Kendall, J.L., Canelas, D.A., Young. J.L. & DeSimone, J.M. (1999). Polymerizations in Supercritical Carbon Dioxide. Chem. Rev. 99, 543–563. DOI: 10.1021/cr9700336.10.1021/cr9700336Open DOISearch in Google Scholar

23. Meng, Y., Su, F.H. & Chen, Y.Z. (2015). A Novel Nanomaterial of Graphene Oxide Dotted with Ni Nanoparticles Produced by Supercritical CO2-Assisted Deposition for Reducing Friction and Wear. ACS Appl. Mater. Interf. 7, 11604–11612. DOI: 10.1021/acsami.5b02650.10.1021/acsami.5b02650Open DOISearch in Google Scholar

24. Islam, M.N., Haldorai, Y., Nguyen, V.H. & Shim, J.J. (2014). Synthesis of Poly(vinyl pivalate) by Atom Transfer Radical Polymerization in Supercritical Carbon Dioxide. Eur. Polym. J. 61, 93–104. DOI: 10.1016/j.eurpolymj.2014.09.003.10.1016/j.eurpolymj.2014.09.003Open DOISearch in Google Scholar

25. Baldino, L., Sarno, M., Cardea, S., Irusta, S., Ciambelli, P., Santamaria, J. & Reverchon, E. (2015). Formation of Cellulose Acetate-Graphene Oxide Nanocomposites by Supercritical CO2 Assisted Phase Inversion. Ind. Eng. Chem. Res. 54, 8147–8156. DOI: 10.1021/acs.iecr.5b01452.10.1021/acs.iecr.5b01452Open DOISearch in Google Scholar

26. Nguyen, V.H., Haldorai, Y., Pham, Q.L. & Shim, J.J. (2011). Supercritical Fluid Mediated Synthesis of Poly(2-hydroxyethyl methacrylate)/Fe3O4 Hybrid Nanocomposite. Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater. 176, 773-778. DOI: 10.1016/j.mseb.2011.02.020.10.1016/j.mseb.2011.02.020Open DOISearch in Google Scholar

27. Jiao, Z., Liu, N. & Chen, Z.M. (2012). Selection Suitable Solvents to Prepare Paclitaxel-loaded Micelles by Solvent Evaporation Method. Pharm. Dev. Technol. 17, 164–169. DOI: 10.3109/10837450.2010.529146.10.3109/10837450.2010.529146Open DOISearch in Google Scholar

28. Patel, V.K., Vishwakarma, N.K., Mishra, A.K., Biswas, C.S. & Ray, B. (2012). (S)-2-(ethyl propionate)-(O-ethyl xanthate)- and (S)-2-(Ethyl isobutyrate)-(O-ethyl xanthate)-mediated RAFT Polymerization of Vinyl Acetate. J. Appl. Polym. Sci. 125, 2946–2955. DOI: 10.1002/app.36233.10.1002/app.36233Open DOISearch in Google Scholar

29. Chu, H.Y., Liu, N., Wang, X., Jiao, Z. & Chen, Z.M. (2009). Morphology and in vitro Release Kinetics of Drug- -loaded Micelles Based on Well-defined PMPC-b-PBMA Copolymer. Int. J. Pharm. 371, 190–196. DOI: 10.1016/j.ijpharm.2008.12.033.10.1016/j.ijpharm.2008.12.033Open DOISearch in Google Scholar

30. Allen, C., Maysinger, D. & Eisenberg, A. (1999). Nano-engineering Block Copolymer Aggregates for Drug Delivery. Coll. Surf. B-Biointerfaces 16, 3–27. DOI: 10.1016/S0927-7765(99)00058-2.10.1016/S0927-7765(99)00058-2Open DOISearch in Google Scholar

31. Rapoport, N. (2007). Physical Stimuli-responsive Polymeric Micelles for Anti-cancer Drug Delivery. Prog. Polym. Sci. 32, 962–990. DOI: 10.1016/j.progpolymsci.2007.05.009.10.1016/j.progpolymsci.2007.05.009Open DOISearch in Google Scholar

32. Herrmann, J. & Bodmeier, R. (1995). Somatostatin Containing Biodegradable Microspheres Prepared by a Modified Solvent Evaporation Method Based on W/O/W-multiple Emulsions. Int. J. Pharm. 126, 129–138. DOI: 10.1016/0378-5173(95)04106-0.10.1016/0378-5173(95)04106-0Open DOISearch in Google Scholar

eISSN:
1899-4741
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering