Accès libre

Effects of processing parameters on the properties of amphiphilic block copolymer micelles prepared by supercritical carbon dioxide evaporation method

À propos de cet article

Citez

1. Yang, X.Y., Zhang, X.Y., Liu, Z.F., Ma, Y.F., Huang, Y. & Chen, Y. (2008). High-Efficiency Loading and Controlled Release of Doxorubicin Hydrochloride on Graphene Oxide. J. Phys. Chem. C 112, 17554–17558. DOI: 10.1021/jp806751k.10.1021/jp806751kOpen DOISearch in Google Scholar

2. Chen, M.X., Li, B.K., Yin, D.K., Liang, J., Li, S.S. & Peng, D.Y. (2014). Layer-by-layer Assembly of Chitosan Stabilized Multilayered Liposomes for Paclitaxel Delivery. Carbohydr. Polym. 111, 298–304. DOI: 10.1016/j.carbpol.2014.04.038.10.1016/j.carbpol.2014.04.038Open DOISearch in Google Scholar

3. Sugahara, K.N., Teesalu, T., Karmali, P.P., Kotamraju, V.R., Agemy, L., Greenwald, D.R. & Ruoslahti, E. (2010). Coadministration of a Tumor-Penetrating Peptide Enhances the Efficacy of Cancer Drugs. Science 328, 1031–1035. DOI: 10.1126/science.1183057.10.1126/.1183057Open DOISearch in Google Scholar

4. Ferrari, M. (2005). Cancer Nanotechnology: Opportunities and Challenges. Nat. Rev. Cancer 5, 161–171. DOI: 10.1038/nrc1566.10.1038/nrc1566Open DOISearch in Google Scholar

5. Jin, J., Lee, W.S., Joo, K.M., Maiti, K.K., Biswas, G., Kim, W., Kim, K.T., Lee, S.J., Kim, K.H., Nam, D.H. & Chung, S.K. (2011). Preparation of Blood-brain Barrier-permeable Paclitaxel-carrier Conjugate and Its Chemotherapeutic Activity in The Mouse Glioblastoma Model. Med. Chem. Comm. 2, 270–273. DOI: 10.1039/c0md00235f.10.1039/c0md00235fOpen DOISearch in Google Scholar

6. Brannon-Peppas, L. & Blanchette, J.O. (2004). Nanoparticle and Targeted Systems for Cancer Therapy. Adv. Drug. Deliv. Rev. 64, 206–212. DOI: 10.1016/j.addr.2012.09.033.10.1016/j.addr.2012.09.033Open DOISearch in Google Scholar

7. Torchilin, V.P. (2007). Micellar nanocarriers: Pharmaceutical Perspectives. Pharm. Res. 24, 1–16. DOI: 10.1007/s11095-006-9132-0.10.1007/s11095-006-9132-0Open DOISearch in Google Scholar

8. Kataoka, K., Harada, A. & Nagasaki, Y. (2001). Block Copolymer Micelles for Drug Delivery: Design, Characterization and Biological Significance. Adv. Drug Deliv. Rev. 47, 113–131. DOI: 10.1016/S0169-409X(00)00124-1.10.1016/S0169-409X(00)00124-1Search in Google Scholar

9. Yang, Y., Pan, D., Luo, K., Li, L. & Gu, Z. (2013). Biodegradable and amphiphilic block copolymer-doxorubicin conjugate as polymeric nanoscale drug delivery vehicle for breast cancer therapy. Biomaterials 34, 8430–8443. DOI: 10.1016/j.biomaterials.2013.07.037.10.1016/j.biomaterials.2013.07.037Open DOISearch in Google Scholar

10. Li, N., Li, N., Yi, Q., Luo, K., Guo, C., Pan, D. & Gu, Z. (2014). Amphiphilic peptide dendritic copolymer-doxorubicin nanoscale conjugate self-assembled to enzyme-responsive anti-cancer agent, Biomaterials, 35, 9529–9545. DOI: 10.1016/j.biomaterials.2014.07.059.10.1016/j.biomaterials.2014.07.059Search in Google Scholar

11. Li, N., Guo, C., Duan, Z., Yu, L., Luo, K., Lu, J. & Gu, Z. (2016). A stimuli-responsive Janus peptide dendron-drug conjugate as a safe and nanoscale drug delivery vehicle for breast cancer therapy. J. Mater. Chem. B, 4, 3760–3769. DOI: 10.1039/c6tb00688d.10.1039/C6TB00688DOpen DOISearch in Google Scholar

12. Li, N., Cai, H., Jiang, L., Hu, J., Bains, A., Hu, J., Gong, Q., Luo, K. & Gu, Z. (2017). Enzyme-Sensitive and Amphiphilic PEGylated Dendrimer-Paclitaxel Prodrug-Based Nanoparticles for Enhanced Stability and Anticancer Efficacy ACS Appl. Mater. Inter. 9, 6865–6877. DOI: 10.1021/acsami.6b15505.10.1021/acsami.6b15505Open DOISearch in Google Scholar

13. Duan, Z.Y., Zhang, Y.H., Zhu, H.Y., Sun, L., Cai, H., Li, B.J., Gong, Q.Y., Gu, Z. W. & Luo, K. (2017). Stimuli-Sensitive Biodegradable and Amphiphilic Block Copolymer-Gemcitabine Conjugates Self-Assemble into a Nanoscale Vehicle for Cancer Therapy, ACS Appl. Mater. Inter. 9, 3474–3486. DOI: 10.1021/acsami.6b15232.10.1021/acsami.6b15232Open DOISearch in Google Scholar

14. Torchilin, V.P. (2001). Structure and Design of Polymeric Surfactant-based Drug Delivery Systems, J. Control. Release 73, 137–172. DOI: 10.1016/S0168-3659(01)00299-1.10.1016/S0168-3659(01)00299-1Open DOISearch in Google Scholar

15. Riess, G. (2003). Micellization of Block Copolymers. Prog. Polym. Sci. 28, 1107–1170. DOI: 10.1016/S0079-6700(03)00015-7.10.1016/S0079-6700(03)00015-7Open DOISearch in Google Scholar

16. Tucker, B.S. & Sumerlin, B.S. (2014). Poly(N-(2-hydroxypropyl) methacrylamide)-based Nanotherapeutics. Polym. Chem. 5, 1566–1572. DOI: 10.1039/C3PY01279D.10.1039/C3PY01279Open DOISearch in Google Scholar

17. Gaucher, G., Marchessault, R.H. & Leroux, J.C. (2010). Polyester-based Micelles and Nanoparticles for the Parenteral Delivery of Taxanes. J. Control. Release 143, 2–12. DOI: 10.1016/j.jconrel.2009.11.012.10.1016/j.jconrel.2009.11.012Open DOISearch in Google Scholar

18. Odonnell, P.B. & McGinity, J.W. (1997). Preparation of Microspheres by the Solvent Evaporation Technique. Adv. Drug. Deliv. Rev. 28, 25–42. DOI: 10.1016/S0169-409X(97)00049-5.10.1016/S0169-409X(97)00049-5Open DOISearch in Google Scholar

19. Blackburn, J.M., Long, D.P., Cabanas, A. & Watkins, J.J. (2001). Deposition of Conformal Copper and Nickel Films From Supercritical Carbon Dioxide. Science 294, 141–145. DOI: 10.1126/science.1064148.10.1126/.1064148Open DOISearch in Google Scholar

20. Darr, J.A. & Poliakoff, M. (1999). New Directions in Inorganic and Metal-organic Coordination Chemistry in Supercritical Fluids. Chem. Rev. 99, 495–541. DOI: 10.1021/cr970036i.10.1021/cr970036iOpen DOISearch in Google Scholar

21. Pham, Q.L., Nguyen, V.H., Haldorai, Y. & Shim, J.J. (2013). Polymerization of Vinyl Pivalate in Supercritical Carbon Dioxide and the Saponification for the Preparation of Syndiotacticity-rich Poly(vinyl alcohol). Korean J. Chem. Eng. 30, 1153–1161. DOI: 10.1007/s11814-013-0019-6.10.1007/s11814-013-0019-6Open DOISearch in Google Scholar

22. Kendall, J.L., Canelas, D.A., Young. J.L. & DeSimone, J.M. (1999). Polymerizations in Supercritical Carbon Dioxide. Chem. Rev. 99, 543–563. DOI: 10.1021/cr9700336.10.1021/cr9700336Open DOISearch in Google Scholar

23. Meng, Y., Su, F.H. & Chen, Y.Z. (2015). A Novel Nanomaterial of Graphene Oxide Dotted with Ni Nanoparticles Produced by Supercritical CO2-Assisted Deposition for Reducing Friction and Wear. ACS Appl. Mater. Interf. 7, 11604–11612. DOI: 10.1021/acsami.5b02650.10.1021/acsami.5b02650Open DOISearch in Google Scholar

24. Islam, M.N., Haldorai, Y., Nguyen, V.H. & Shim, J.J. (2014). Synthesis of Poly(vinyl pivalate) by Atom Transfer Radical Polymerization in Supercritical Carbon Dioxide. Eur. Polym. J. 61, 93–104. DOI: 10.1016/j.eurpolymj.2014.09.003.10.1016/j.eurpolymj.2014.09.003Open DOISearch in Google Scholar

25. Baldino, L., Sarno, M., Cardea, S., Irusta, S., Ciambelli, P., Santamaria, J. & Reverchon, E. (2015). Formation of Cellulose Acetate-Graphene Oxide Nanocomposites by Supercritical CO2 Assisted Phase Inversion. Ind. Eng. Chem. Res. 54, 8147–8156. DOI: 10.1021/acs.iecr.5b01452.10.1021/acs.iecr.5b01452Open DOISearch in Google Scholar

26. Nguyen, V.H., Haldorai, Y., Pham, Q.L. & Shim, J.J. (2011). Supercritical Fluid Mediated Synthesis of Poly(2-hydroxyethyl methacrylate)/Fe3O4 Hybrid Nanocomposite. Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater. 176, 773-778. DOI: 10.1016/j.mseb.2011.02.020.10.1016/j.mseb.2011.02.020Open DOISearch in Google Scholar

27. Jiao, Z., Liu, N. & Chen, Z.M. (2012). Selection Suitable Solvents to Prepare Paclitaxel-loaded Micelles by Solvent Evaporation Method. Pharm. Dev. Technol. 17, 164–169. DOI: 10.3109/10837450.2010.529146.10.3109/10837450.2010.529146Open DOISearch in Google Scholar

28. Patel, V.K., Vishwakarma, N.K., Mishra, A.K., Biswas, C.S. & Ray, B. (2012). (S)-2-(ethyl propionate)-(O-ethyl xanthate)- and (S)-2-(Ethyl isobutyrate)-(O-ethyl xanthate)-mediated RAFT Polymerization of Vinyl Acetate. J. Appl. Polym. Sci. 125, 2946–2955. DOI: 10.1002/app.36233.10.1002/app.36233Open DOISearch in Google Scholar

29. Chu, H.Y., Liu, N., Wang, X., Jiao, Z. & Chen, Z.M. (2009). Morphology and in vitro Release Kinetics of Drug- -loaded Micelles Based on Well-defined PMPC-b-PBMA Copolymer. Int. J. Pharm. 371, 190–196. DOI: 10.1016/j.ijpharm.2008.12.033.10.1016/j.ijpharm.2008.12.033Open DOISearch in Google Scholar

30. Allen, C., Maysinger, D. & Eisenberg, A. (1999). Nano-engineering Block Copolymer Aggregates for Drug Delivery. Coll. Surf. B-Biointerfaces 16, 3–27. DOI: 10.1016/S0927-7765(99)00058-2.10.1016/S0927-7765(99)00058-2Open DOISearch in Google Scholar

31. Rapoport, N. (2007). Physical Stimuli-responsive Polymeric Micelles for Anti-cancer Drug Delivery. Prog. Polym. Sci. 32, 962–990. DOI: 10.1016/j.progpolymsci.2007.05.009.10.1016/j.progpolymsci.2007.05.009Open DOISearch in Google Scholar

32. Herrmann, J. & Bodmeier, R. (1995). Somatostatin Containing Biodegradable Microspheres Prepared by a Modified Solvent Evaporation Method Based on W/O/W-multiple Emulsions. Int. J. Pharm. 126, 129–138. DOI: 10.1016/0378-5173(95)04106-0.10.1016/0378-5173(95)04106-0Open DOISearch in Google Scholar

eISSN:
1899-4741
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering