Non-singular Fast Terminal Sliding Mode Control Integrated with Proportional Multi-Resonant-Based Controller for Multifunctional Grid-Tied LCL-Filtered Inverter
This work is licensed under the Creative Commons Attribution 4.0 International License.
Alali, M. A. E., Shtessel, Y. B. and Barbot, J. P. (2019). Grid-Connected Shunt Active LCL Control via Continuous Sliding Modes. IEEE/ASME Transactions on Mechatronics, 24(2), pp. 729–740. doi: 10.1109/TMECH.2019.2896140AlaliM. A. E.ShtesselY. B.BarbotJ. P.2019Grid-Connected Shunt Active LCL Control via Continuous Sliding ModesIEEE/ASME Transactions on Mechatronics24272974010.1109/TMECH.2019.2896140Open DOISearch in Google Scholar
Alathamneh, M., Ghanayem, H. and Nelms, R. M. (2022). Bidirectional Power Control for a Three-Phase Grid-Connected Inverter under Unbalanced Grid Conditions Using a Proportional-Resonant and a Modified Time-Domain Symmetrical Components Extraction Method. Energies, 15(24), p. 9564. doi: 10.3390/en15249564AlathamnehM.GhanayemH.NelmsR. M.2022Bidirectional Power Control for a Three-Phase Grid-Connected Inverter under Unbalanced Grid Conditions Using a Proportional-Resonant and a Modified Time-Domain Symmetrical Components Extraction MethodEnergies1524956410.3390/en15249564Open DOISearch in Google Scholar
Altin, N., Ozdemir, S., Komurcugil, H. and Sefa, I. (2018). Sliding-Mode Control in Natural Frame with Reduced Number of Sensors for Three-Phase Grid-Tied LCL-Interfaced Inverters. IEEE Transactions on Industrial Electronics, 66(4), pp. 2903–2913. doi: 10.1109/TIE.2018.2847675AltinN.OzdemirS.KomurcugilH.SefaI.2018Sliding-Mode Control in Natural Frame with Reduced Number of Sensors for Three-Phase Grid-Tied LCL-Interfaced InvertersIEEE Transactions on Industrial Electronics6642903291310.1109/TIE.2018.2847675Open DOISearch in Google Scholar
Ammar, A., Belaroussi, O., Benakcha, M., Zemmit, A. and Ameid, T. (2024). Super-Twisting MRAS Observer-Based Non-linear Direct Flux and Torque Control for Induction Motor Drives. Power Electronics and Drives, 9, pp. 374–396. doi: 10.2478/pead-2024-0024AmmarA.BelaroussiO.BenakchaM.ZemmitA.AmeidT.2024Super-Twisting MRAS Observer-Based Non-linear Direct Flux and Torque Control for Induction Motor DrivesPower Electronics and Drives937439610.2478/pead-2024-0024Open DOISearch in Google Scholar
Avci, E. and Ucar, M. (2020). Proportional Multi-Resonant-Based Controller Design Method Enhanced with a Lead Compensator for Stand-Alone Mode Three-Level Three-Phase Four-Leg Advanced T-NPC Inverter System. IET Power Electronics, 13(4), pp. 863–872. doi: 10.1049/iet-pel.2019.0765AvciE.UcarM.2020Proportional Multi-Resonant-Based Controller Design Method Enhanced with a Lead Compensator for Stand-Alone Mode Three-Level Three-Phase Four-Leg Advanced T-NPC Inverter SystemIET Power Electronics13486387210.1049/iet-pel.2019.0765Open DOISearch in Google Scholar
Bacha, S., Munteanu, I., & Bratcu, A. I. (2014). Power electronic converters: modeling and control (Vol. 4). London, UK: Springer.BachaS.MunteanuI.BratcuA. I.2014Power electronic converters: modeling and control4London, UKSpringerSearch in Google Scholar
Boopathi, R. and Indragandhi, V. (2023). Control Techniques for Renewable Energy Integration with Shunt Active Filter: A Review. International Journal of Ambient Energy, 44(1), pp. 424–441. doi: 10.1080/01430750.2022.2128413BoopathiR.IndragandhiV.2023Control Techniques for Renewable Energy Integration with Shunt Active Filter: A ReviewInternational Journal of Ambient Energy44142444110.1080/01430750.2022.2128413Open DOISearch in Google Scholar
Bosch, S., Staiger, J. and Steinhart, H. (2017). Predictive Current Control for an Active Power Filter with LCL-Filter. IEEE Transactions on Industrial Electronics, 65(6), pp. 4943–4952. doi: 10.1109/TIE.2017.2772176BoschS.StaigerJ.SteinhartH.2017Predictive Current Control for an Active Power Filter with LCL-FilterIEEE Transactions on Industrial Electronics6564943495210.1109/TIE.2017.2772176Open DOISearch in Google Scholar
Boukattaya, M., Mezghani, N. and Damak, T. (2018). Adaptive Nonsingular Fast Terminal Sliding-Mode Control for the Tracking Problem of Uncertain Dynamical Systems. ISA Transactions, 77, pp. 1–19. doi: 10.1016/j.isatra.2018.04.007BoukattayaM.MezghaniN.DamakT.2018Adaptive Nonsingular Fast Terminal Sliding-Mode Control for the Tracking Problem of Uncertain Dynamical SystemsISA Transactions7711910.1016/j.isatra.2018.04.007Open DOISearch in Google Scholar
Cha, H., Vu, T. K. and Kim, J. E. (2009). Design and control of proportional-resonant controller based photovoltaic power conditioning system. 2009 IEEE Energy Conversion Congress and Exposition. IEEE, pp. 2198–2205.ChaH.VuT. K.KimJ. E.2009Design and control of proportional-resonant controller based photovoltaic power conditioning system2009 IEEE Energy Conversion Congress and ExpositionIEEE21982205Search in Google Scholar
Chen, C. I., Chen, Y. C. and Chen, C. H. (2022). Recurrent Wavelet Fuzzy Neural Network-Based Reference Compensation Current Control Strategy for Shunt Active Power Filter. Energies, 15(22), p. 8687. doi: 10.3390/en15228687ChenC. I.ChenY. C.ChenC. H.2022Recurrent Wavelet Fuzzy Neural Network-Based Reference Compensation Current Control Strategy for Shunt Active Power FilterEnergies1522868710.3390/en15228687Open DOISearch in Google Scholar
Dehghani, M., Mardaneh, M. and Shafiei, M. H. (2020). Sliding mode control for load harmonics compensation and PV voltage regulation in a grid-tied inverter through a single-stage MPPT. 2020 28th Iranian Conference on Electrical Engineering (ICEE). IEEE, pp. 1–6.DehghaniM.MardanehM.ShafieiM. H.2020Sliding mode control for load harmonics compensation and PV voltage regulation in a grid-tied inverter through a single-stage MPPT2020 28th Iranian Conference on Electrical Engineering (ICEE)IEEE16Search in Google Scholar
Guzman, R., de Vicuna, L. G., Morales, J., Castilla, M. and Miret, J. (2016). Model-Based Active Damping Control for Three-Phase Voltage Source Inverters with LCL Filter. IEEE Transactions on Power Electronics, 32(7), pp. 5637–5650. doi: 10.1109/TPEL.2016.2605858GuzmanR.de VicunaL. G.MoralesJ.CastillaM.MiretJ.2016Model-Based Active Damping Control for Three-Phase Voltage Source Inverters with LCL FilterIEEE Transactions on Power Electronics3275637565010.1109/TPEL.2016.2605858Open DOISearch in Google Scholar
Hao, X., Yang, X., Liu, T., Huang, L. and Chen, W. (2012). A Sliding-Mode Controller with Multiresonant Sliding Surface for Single-Phase Grid-Connected VSI with an LCL Filter. IEEE Transactions on Power Electronics, 28(5), pp. 2259–2268. doi: 10.1109/TPEL.2012.2218133HaoX.YangX.LiuT.HuangL.ChenW.2012A Sliding-Mode Controller with Multiresonant Sliding Surface for Single-Phase Grid-Connected VSI with an LCL FilterIEEE Transactions on Power Electronics2852259226810.1109/TPEL.2012.2218133Open DOISearch in Google Scholar
Hou, S., Qiu, Z., Chu, Y., Gao, J. and Fei, J. (2024). Hybrid Intelligent Control Using Hippocampus-Based Fuzzy Neural Networks for Active Power Filter. IEEE Transactions on Power Electronics, 39(12), pp. 15924–15942. doi: 10.1109/TPEL.2024.3449043HouS.QiuZ.ChuY.GaoJ.FeiJ.2024Hybrid Intelligent Control Using Hippocampus-Based Fuzzy Neural Networks for Active Power FilterIEEE Transactions on Power Electronics3912159241594210.1109/TPEL.2024.3449043Open DOISearch in Google Scholar
Huang, M., Li, H., Wu, W. and Blaabjerg, F. (2019). Observer-Based Sliding Mode Control to Improve Stability of Three-Phase LCL-Filtered Grid-Connected VSIs. Energies, 12(8), p. 1421. doi: 10.3390/en12081421HuangM.LiH.WuW.BlaabjergF.2019Observer-Based Sliding Mode Control to Improve Stability of Three-Phase LCL-Filtered Grid-Connected VSIsEnergies128142110.3390/en12081421Open DOISearch in Google Scholar
Huang, J., Zhao, Y., Wang, J. and Zhang, P. (2023). A Hybrid Active Damping Strategy for Improving the Adaptability of LCL Converter in Weak Grid. Electronics, 13(1), p. 144. doi: 10.3390/electronics13010144HuangJ.ZhaoY.WangJ.ZhangP.2023A Hybrid Active Damping Strategy for Improving the Adaptability of LCL Converter in Weak GridElectronics13114410.3390/electronics13010144Open DOISearch in Google Scholar
Kołek, K. and Firlit, A. (2021). A New Optimal Current Controller for a Three-Phase Shunt Active Power Filter Based on Karush–Kuhn–Tucker Conditions. Energies, 14(19), p. 6381. doi: 10.3390/en14196381KołekK.FirlitA.2021A New Optimal Current Controller for a Three-Phase Shunt Active Power Filter Based on Karush–Kuhn–Tucker ConditionsEnergies1419638110.3390/en14196381Open DOISearch in Google Scholar
Liu, T., Liu, J., Liu, Z. and Liu, Z. (2019). A Study of Virtual Resistor-Based Active Damping Alternatives for LCL Resonance in Grid-Connected Voltage Source Inverters. IEEE Transactions on Power Electronics, 35(1), pp. 247–262. doi: 10.1109/TPEL.2019.2911163LiuT.LiuJ.LiuZ.LiuZ.2019A Study of Virtual Resistor-Based Active Damping Alternatives for LCL Resonance in Grid-Connected Voltage Source InvertersIEEE Transactions on Power Electronics35124726210.1109/TPEL.2019.2911163Open DOISearch in Google Scholar
Lorzadeh, I., Askarian Abyaneh, H., Savaghebi, M., Bakhshai, A. and Guerrero, J. M. (2016). Capacitor Current Feedback-Based Active Resonance Damping Strategies for Digitally-Controlled Inductive-Capacitive-Inductive-Filtered Grid-Connected Inverters. Energies, 9(8), p. 642. doi: 10.3390/en9080642LorzadehI.Askarian AbyanehH.SavaghebiM.BakhshaiA.GuerreroJ. M.2016Capacitor Current Feedback-Based Active Resonance Damping Strategies for Digitally-Controlled Inductive-Capacitive-Inductive-Filtered Grid-Connected InvertersEnergies9864210.3390/en9080642Open DOISearch in Google Scholar
Lou, Z., Li, P., Ma, K. and Teng, F. (2022). Harmonics and Interharmonics Detection Based on Synchrosqueezing Adaptive S-Transform. Energies, 15(13), p. 4539. doi: 10.3390/en15134539LouZ.LiP.MaK.TengF.2022Harmonics and Interharmonics Detection Based on Synchrosqueezing Adaptive S-TransformEnergies1513453910.3390/en15134539Open DOISearch in Google Scholar
Maciążek, M. (2022). Active Power Filters and Power Quality. Energies, 15(22), p. 8483. doi: 10.3390/en15228483MaciążekM.2022Active Power Filters and Power QualityEnergies1522848310.3390/en15228483Open DOISearch in Google Scholar
Mondal, B. and Karuppaswamy, A. (2024). A Non-Iterative Design Method for Output LCL Filter with RC Damping in Grid-Connected Inverters. IEEE Transactions on Industrial Electronics, 71(12), pp. 15768–15779. doi: 10.1109/TIE.2024.3387080MondalB.KaruppaswamyA.2024A Non-Iterative Design Method for Output LCL Filter with RC Damping in Grid-Connected InvertersIEEE Transactions on Industrial Electronics7112157681577910.1109/TIE.2024.3387080Open DOISearch in Google Scholar
Rabbani, A., Mardaneh, M., Jamshidpour, E. and Poure, P. (2023). Improved sliding mode control and active damping for LCL-filtered voltage source inverter connected to distorted grid. 2023 IEEE International Conference on Environment and Electrical Engineering and 2023 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe). IEEE, pp. 1–6.RabbaniA.MardanehM.JamshidpourE.PoureP.2023Improved sliding mode control and active damping for LCL-filtered voltage source inverter connected to distorted grid2023 IEEE International Conference on Environment and Electrical Engineering and 2023 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe)IEEE16Search in Google Scholar
Satpathy, G. and De, D. (2024). A Novel Proportional Multi-Resonant Current Controller Strategy for Reduced DC Voltage Fed D-STATCOM with Internal LCL Resonance Damping. Power Electronics and Drives, 9(44), pp. 122–141. doi: 10.2478/pead-2024-0008SatpathyG.DeD.2024A Novel Proportional Multi-Resonant Current Controller Strategy for Reduced DC Voltage Fed D-STATCOM with Internal LCL Resonance DampingPower Electronics and Drives94412214110.2478/pead-2024-0008Open DOISearch in Google Scholar
Sozanski, K. and Szczesniak, P. (2023). Advanced Control Algorithm for Three-Phase Shunt Active Power Filter Using Sliding DFT. Energies, 16(3), p. 1453. doi: 10.3390/en16031453SozanskiK.SzczesniakP.2023Advanced Control Algorithm for Three-Phase Shunt Active Power Filter Using Sliding DFTEnergies163145310.3390/en16031453Open DOISearch in Google Scholar
Teodorescu, R., Blaabjerg, F., Liserre, M. and Loh, P. C. (2006). Proportional-Resonant Controllers and Filters for Grid-Connected Voltage-Source Converters. IEE Proceedings - Electric Power Applications, 153(5), pp. 750–762. doi: 10.1049/ip-epa:20060008TeodorescuR.BlaabjergF.LiserreM.LohP. C.2006Proportional-Resonant Controllers and Filters for Grid-Connected Voltage-Source ConvertersIEE Proceedings - Electric Power Applications153575076210.1049/ip-epa:20060008Open DOISearch in Google Scholar
Trinh, Q. N. and Lee, H. H. (2012). An Advanced Current Control Strategy for Three-Phase Shunt Active Power Filters. IEEE Transactions on Industrial Electronics, 60(12), pp. 5400–5410. doi: 10.1109/TIE.2012.2229677TrinhQ. N.LeeH. H.2012An Advanced Current Control Strategy for Three-Phase Shunt Active Power FiltersIEEE Transactions on Industrial Electronics60125400541010.1109/TIE.2012.2229677Open DOISearch in Google Scholar
Utkin, V. I. (1978). Sliding Modes and Their Application in Variable Structure Systems. Moscow: MIR Publishers.UtkinV. I.1978Sliding Modes and Their Application in Variable Structure SystemsMoscowMIR PublishersSearch in Google Scholar
Zhang, L. and Fei, J. (2023). Intelligent Complementary Terminal Sliding Mode Using Multiloop Neural Network for Active Power Filter. IEEE Transactions on Power Electronics, 38(8), pp. 9367–9383. doi: 10.1109/TPEL.2023.3266738ZhangL.FeiJ.2023Intelligent Complementary Terminal Sliding Mode Using Multiloop Neural Network for Active Power FilterIEEE Transactions on Power Electronics3889367938310.1109/TPEL.2023.3266738Open DOISearch in Google Scholar
Zheng, X., Qiu, K., Hou, L., Liu, Z. and Wang, C. (2018). Sliding-mode control for grid-connected inverter with a passive damped LCL filter. 2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA). IEEE, pp. 739–744.ZhengX.QiuK.HouL.LiuZ.WangC.2018Sliding-mode control for grid-connected inverter with a passive damped LCL filter2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA)IEEE739744Search in Google Scholar