Accesso libero

Dose enhancement effects of different-sized nanoparticles on tumors and surrounding tissues using Geant4 track structure simulation

  
22 ago 2025
INFORMAZIONI SU QUESTO ARTICOLO

Cita
Scarica la copertina

Kakade, N. R., & Sharma, S. D. (2015). Dose enhancement in gold nanoparticle-aided radiotherapy for the therapeutic photon beams using Monte Carlo technique. J. Cancer Res. Ther., 11, 94–97. KakadeN. R. SharmaS. D. 2015 Dose enhancement in gold nanoparticle-aided radiotherapy for the therapeutic photon beams using Monte Carlo technique J. Cancer Res. Ther. 11 94 97 Search in Google Scholar

Haume, K., Rosa, S., Grellet, S., Smialek, M. A., Butterworth, K. T., Solov’yov, A. V., Prise, K. M., Golding, J., & Mason, N. J. (2016). Gold nanoparticles for cancer radiotherapy: a review. Cancer Nano., 7, 8. HaumeK. RosaS. GrelletS. SmialekM. A. ButterworthK. T. Solov’yovA. V. PriseK. M. GoldingJ. MasonN. J. 2016 Gold nanoparticles for cancer radiotherapy: a review Cancer Nano. 7 8 Search in Google Scholar

Kwatra, D., Venugopal, A., & Anant, S. (2013). Nanoparticles in radiation therapy: a summary of various approaches to enhance radiosensitization in cancer. Transl. Cancer Res., 2(4), 330–342. KwatraD. VenugopalA. AnantS. 2013 Nanoparticles in radiation therapy: a summary of various approaches to enhance radiosensitization in cancer Transl. Cancer Res. 2 4 330 342 Search in Google Scholar

Kobayashi, K., Usami, N., Porcel, E., Lacombe, S., & Le Sech, C. (2010). Enhancement of radiation effect by heavy elements. Rev. Mutat. Res., 704(1/3), 123–131. KobayashiK. UsamiN. PorcelE. LacombeS. Le SechC. 2010 Enhancement of radiation effect by heavy elements Rev. Mutat. Res. 704 1/3 123 131 Search in Google Scholar

Pan, Y., Leifert, A., Ruau, D., Neuss, S., Bornemann, J., Schmid, G., Brandau, W., Simon, U., & Jahnen Dechent, W. (2009). Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small, 5(18), 2067–2076. PanY. LeifertA. RuauD. NeussS. BornemannJ. SchmidG. BrandauW. SimonU. Jahnen DechentW. 2009 Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage Small 5 18 2067 2076 Search in Google Scholar

Taggart, L. E., McMahon, S. J., Currell, F. J., Prise, K. M., & Butterworth, K. T. (2014). The role of mitochondrial function in gold nanoparticle mediated radiosensitisation. Cancer Nanotechnol., 5(1), 5. TaggartL. E. McMahonS. J. CurrellF. J. PriseK. M. ButterworthK. T. 2014 The role of mitochondrial function in gold nanoparticle mediated radiosensitisation Cancer Nanotechnol. 5 1 5 Search in Google Scholar

Taggart, L. E., McMahon, S. J., Butterworth, K. T., Currell, F. J., Schettino, G., & Prise, K. M. (2016). Protein disulphide isomerase as a target for nanoparticle-mediated sensitisation of cancer cells to radiation. Nanotechnology, 27(21), 215101. TaggartL. E. McMahonS. J. ButterworthK. T. CurrellF. J. SchettinoG. PriseK. M. 2016 Protein disulphide isomerase as a target for nanoparticle-mediated sensitisation of cancer cells to radiation Nanotechnology 27 21 215101 Search in Google Scholar

Kavanagh, J. N., Redmond, K. M., Schettino, G., & Prise, K. M. (2013). DNA double strand break repair: a radiation perspective. Antioxid. Redox Signal., 18(18), 2458–2472. KavanaghJ. N. RedmondK. M. SchettinoG. PriseK. M. 2013 DNA double strand break repair: a radiation perspective Antioxid. Redox Signal. 18 18 2458 2472 Search in Google Scholar

Nikjoo, H., O’Neill, P., Wilson, W. E., & Goodhead, D. T. (2001). Computational approach for determining the spectrum of DNA damage induced by ionizing radiation. Radiat. Res., 156(5), 577–583. NikjooH. O’NeillP. WilsonW. E. GoodheadD. T. 2001 Computational approach for determining the spectrum of DNA damage induced by ionizing radiation Radiat. Res. 156 5 577 583 Search in Google Scholar

Emfietzoglou, D., Cucinotta, F. A., & Nikjoo, H. (2005). A complete dielectric response model for liquid water: a solution of the Bethe ridge problem. Radiat Res., 164(2), 202–211. EmfietzoglouD. CucinottaF. A. NikjooH. 2005 A complete dielectric response model for liquid water: a solution of the Bethe ridge problem Radiat Res. 164 2 202 211 Search in Google Scholar

Pan, X., Cloutier, P., Hunting, D., & Sanche, L. (2003). Dissociative electron attachment to DNA. Phys. Rev. Lett., 90, 208102. PanX. CloutierP. HuntingD. SancheL. 2003 Dissociative electron attachment to DNA Phys. Rev. Lett. 90 208102 Search in Google Scholar

Porcel, E., Liehn, S., Remita, H., Usami, N., Kobayashi, K., Furusawa, Y., Le Sech, C., & Lacombe, S. (2010). Platinum nanoparticles: a promising material for future cancer therapy? Nanotechnology, 21, 085103. PorcelE. LiehnS. RemitaH. UsamiN. KobayashiK. FurusawaY. Le SechC. LacombeS. 2010 Platinum nanoparticles: a promising material for future cancer therapy? Nanotechnology 21 085103 Search in Google Scholar

Verkhovtsev, A. V., Korol, A. V., & Solov’yov, A. V. (2015). Electron production by sensitizing gold nanoparticles irradiated by fast ions. J. Phys. Chem. C, 119(20), 11000–11013. VerkhovtsevA. V. KorolA. V. Solov’yovA. V. 2015 Electron production by sensitizing gold nanoparticles irradiated by fast ions J. Phys. Chem. C 119 20 11000 11013 Search in Google Scholar

Butterworth, K. T., McMahon, S. J., Taggart, L. E., & Prise, K. M. (2013). Radiosensitization by gold nanoparticles: effective at megavoltage energies and potential role of oxidative stress. Transl. Cancer Res., 2(4), 269–279. ButterworthK. T. McMahonS. J. TaggartL. E. PriseK. M. 2013 Radiosensitization by gold nanoparticles: effective at megavoltage energies and potential role of oxidative stress Transl. Cancer Res. 2 4 269 279 Search in Google Scholar

Moradi, F., Rezaee Enrahim Saraee, Kh., Abdul Sani, S. F., & Bradley, D. A. (2021). Metallic nanoparticle radiosensitization: The role of Monte Carlo simulations towards progress. Radiat. Phys. Chem., 180, 109294. MoradiF. Rezaee Enrahim SaraeeKh. Abdul SaniS. F. BradleyD. A. 2021 Metallic nanoparticle radiosensitization: The role of Monte Carlo simulations towards progress Radiat. Phys. Chem. 180 109294 Search in Google Scholar

Hainfeld, J. F., Dilmanian, F. A., Slatkin, D. N., & Smilowitz, H. M. (2008). Radiotherapy enhancement with gold nanoparticles. J. Pharm. Pharmacol., 60(8), 977–985. HainfeldJ. F. DilmanianF. A. SlatkinD. N. SmilowitzH. M. 2008 Radiotherapy enhancement with gold nanoparticles J. Pharm. Pharmacol. 60 8 977 985 Search in Google Scholar

Taheri, A., Khandaker, M. U., Moradi, F., & Bradley, D. A. (2024). A simulation study on the radiosensitization properties of gold nanorods. Phys. Med. Biol., 69, 045029. TaheriA. KhandakerM. U. MoradiF. BradleyD. A. 2024 A simulation study on the radiosensitization properties of gold nanorods Phys. Med. Biol. 69 045029 Search in Google Scholar

He, W., Ma, G., Shen, Q., & Tang, Z. (2022). Engineering gold nanostructures for cancer treatment: spherical nanoparticles, nanorods, and atomically precise nanoclusters. Nanomaterials, 12, 1738. HeW. MaG. ShenQ. TangZ. 2022 Engineering gold nanostructures for cancer treatment: spherical nanoparticles, nanorods, and atomically precise nanoclusters Nanomaterials 12 1738 Search in Google Scholar

Her, S., Jaffray, D. A., & Allen, C. (2017). Gold nanoparticles for applications in cancer radiotherapy: Mechanisms and recent advancements. Adv. Drug Deliv. Rev., 109, 84–101. HerS. JaffrayD. A. AllenC. 2017 Gold nanoparticles for applications in cancer radiotherapy: Mechanisms and recent advancements Adv. Drug Deliv. Rev. 109 84 101 Search in Google Scholar

Çağlar, M., Eşitmez, D., & Cebe, M. S. (2024). The effect of dose enhancement in tumor with silver nanoparticles on surrounding healthy tissues: A Monte Carlo study. Technology in Cancer Research & Treatment, 23, 1–8. ÇağlarM. EşitmezD. CebeM. S. 2024 The effect of dose enhancement in tumor with silver nanoparticles on surrounding healthy tissues: A Monte Carlo study Technology in Cancer Research & Treatment 23 1 8 Search in Google Scholar

Wu, J. (2021). The enhanced permeability and retention (Epr) effect: The significance of the concept and methods to enhance its application. J. Pers. Med., 11(8), 771–779. WuJ. 2021 The enhanced permeability and retention (Epr) effect: The significance of the concept and methods to enhance its application J. Pers. Med. 11 8 771 779 Search in Google Scholar

Matsumura, Y., & Maeda, H. (1986). A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res., 46(8), 6387–6392. MatsumuraY. MaedaH. 1986 A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs Cancer Res. 46 8 6387 6392 Search in Google Scholar

Mesbahi, A. (2010). A review on gold nanoparticles radiosensitization effect in radiation therapy of cancer. Rep. Pract. Oncol. Radiother., 15(6), 176–180. MesbahiA. 2010 A review on gold nanoparticles radiosensitization effect in radiation therapy of cancer Rep. Pract. Oncol. Radiother. 15 6 176 180 Search in Google Scholar

Martelli, S., & Chow, J. C. L. (2020). Dose enhancement for the flattening-filter-free and flattening-filter photon beams in nanoparticle-enhanced radiotherapy: A Monte Carlo phantom study. Nanomaterials, 10, 637. MartelliS. ChowJ. C. L. 2020 Dose enhancement for the flattening-filter-free and flattening-filter photon beams in nanoparticle-enhanced radiotherapy: A Monte Carlo phantom study Nanomaterials 10 637 Search in Google Scholar

Cho, S. H. (2005). Estimation of tumour dose enhancement due to gold nanoparticles during typical radiation treatments: A preliminary Monte Carlo study. Phys. Med. Biol., 50, N163–N173. ChoS. H. 2005 Estimation of tumour dose enhancement due to gold nanoparticles during typical radiation treatments: A preliminary Monte Carlo study Phys. Med. Biol. 50 N163 N173 Search in Google Scholar

Chow, J. C. L., & Jubran, S. (2023). Depth dose enhancement in orthovoltage nanoparticle-enhanced radiotherapy: A Monte Carlo phantom study. Micromachines, 14, 1230. ChowJ. C. L. JubranS. 2023 Depth dose enhancement in orthovoltage nanoparticle-enhanced radiotherapy: A Monte Carlo phantom study Micromachines 14 1230 Search in Google Scholar

McMahon, S. J., Hyland, W. B., Muir, M. F., Coulter, J. A., Jain, S., Butterworth, K. T., Schettino, G., Dickson, G. R., Hounsell, A. R., O’Sullivan, J. M., Prise, K. M., Hirst, D. G., & Currell, F. J. (2011). Nanodosimetric effects of gold nanoparticles in megavoltage radiation therapy. Radiother. Oncol., 100(3), 412–416. McMahonS. J. HylandW. B. MuirM. F. CoulterJ. A. JainS. ButterworthK. T. SchettinoG. DicksonG. R. HounsellA. R. O’SullivanJ. M. PriseK. M. HirstD. G. CurrellF. J. 2011 Nanodosimetric effects of gold nanoparticles in megavoltage radiation therapy Radiother. Oncol. 100 3 412 416 Search in Google Scholar

Malam, Y., Loizidou, M., & Seifalian, A. M. (2009). Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trend Pharmacol. Sci., 30(11), 592–599. MalamY. LoizidouM. SeifalianA. M. 2009 Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer Trend Pharmacol. Sci. 30 11 592 599 Search in Google Scholar

Barreto, J. A., O’Malley, W., Kubeil, M., Graham, B., Stephan, H., & Spiccia, L. (2011). Nanomaterials: applications in cancer imaging and therapy. Adv. Mater., 23(12), 18–40. BarretoJ. A. O’MalleyW. KubeilM. GrahamB. StephanH. SpicciaL. 2011 Nanomaterials: applications in cancer imaging and therapy Adv. Mater. 23 12 18 40 Search in Google Scholar

Carter, J. D., Cheng, N. N., Qu, Y., Suarez, G. D., & Guo, T. (2007). Nanoscale energy deposition by X-ray absorbing nanostructures. J. Phys. Chem. B, 111, 11622–11625. CarterJ. D. ChengN. N. QuY. SuarezG. D. GuoT. 2007 Nanoscale energy deposition by X-ray absorbing nanostructures J. Phys. Chem. B 111 11622 11625 Search in Google Scholar

Liu, C. -J., Wang, C. -H., Chen, S. -T., Chen, H. -H., Leng, W. -H., Chien, C. -C., Wang, C. -L., Kempson, M., Hwu, Y., Lai, T. -C., Hsiao, M., Yang, C. -S., Chen, Y. -J., & Margaritondo, G. (2010). Enhancement of cell radiation sensitivity by pegylated gold nanoparticles. Phys. Med. Biol., 55, 931–945. LiuC. -J. WangC. -H. ChenS. -T. ChenH. -H. LengW. -H. ChienC. -C. WangC. -L. KempsonM. HwuY. LaiT. -C. HsiaoM. YangC. -S. ChenY. -J. MargaritondoG. 2010 Enhancement of cell radiation sensitivity by pegylated gold nanoparticles Phys. Med. Biol. 55 931 945 Search in Google Scholar

Zhao, P., Li, N., & Astruc, D. (2013). State of the art in gold nanoparticle synthesis. Coord. Chem. Rev., 257, 638–665. ZhaoP. LiN. AstrucD. 2013 State of the art in gold nanoparticle synthesis Coord. Chem. Rev. 257 638 665 Search in Google Scholar

Alkilany, A. M., Thompson, L. B., Boulos, S. P., Sisco, P. N., & Murphy, C. J. (2012). Gold nanorods: their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions. Adv. Drug Deliv. Rev., 64, 190–199. AlkilanyA. M. ThompsonL. B. BoulosS. P. SiscoP. N. MurphyC. J. 2012 Gold nanorods: their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions Adv. Drug Deliv. Rev. 64 190 199 Search in Google Scholar

Gray, T., Bassiri, N., David, S., Patel, D. Y., Stathakis, S., Kirby, N., & Mayer, K. M. (2021). A detailed experimental and Monte Carlo analysis of gold nanoparticle dose enhancement using 6 MV and 18 MV external beam energies in a macroscopic scale. Appl. Radiat. Isot., 171, 109638. GrayT. BassiriN. DavidS. PatelD. Y. StathakisS. KirbyN. MayerK. M. 2021 A detailed experimental and Monte Carlo analysis of gold nanoparticle dose enhancement using 6 MV and 18 MV external beam energies in a macroscopic scale Appl. Radiat. Isot. 171 109638 Search in Google Scholar

Khodaei, A., Moradi, F., Oresegum, A., Zubair, H. T., Bradley, D. A., Ibrahim, A. S., & Abdul Rashid, H. A. (2024). Evaluation of TOPAS MC tool performance in optical photon transport and radioluminescence-based dosimetry. Biomed. Phys. Eng. Express, 10, 055034. KhodaeiA. MoradiF. OresegumA. ZubairH. T. BradleyD. A. IbrahimA. S. Abdul RashidH. A. 2024 Evaluation of TOPAS MC tool performance in optical photon transport and radioluminescence-based dosimetry Biomed. Phys. Eng. Express 10 055034 Search in Google Scholar

Emfietzoglou, D., & Nikjoo, H. (2005). The effect of model approximations on single-collision distributions of low-energy electrons in liquid water. Radiat. Res., 163(1), 98–111. EmfietzoglouD. NikjooH. 2005 The effect of model approximations on single-collision distributions of low-energy electrons in liquid water Radiat. Res. 163 1 98 111 Search in Google Scholar

Incerti, S., Kyriakou, I., Bernal, M. A., Bordage, M. C., Francis, Z., Guatelli, S., Ivanchenko, V., Karamitros, M., Lampe, N., Lee, S. B., Meylan, S., Min, C. H., Shin, W. G., Nieminen, P., Sakata, D., Tang, N., Villagrasa, C., Tran, H. N., & Brown, J. M. C. (2018). Geant4-DNA example applications for track structure simulations in liquid water: A report from the Geant4-DNA Project. Med. Phys., 45(8), 722–739. IncertiS. KyriakouI. BernalM. A. BordageM. C. FrancisZ. GuatelliS. IvanchenkoV. KaramitrosM. LampeN. LeeS. B. MeylanS. MinC. H. ShinW. G. NieminenP. SakataD. TangN. VillagrasaC. TranH. N. BrownJ. M. C. 2018 Geant4-DNA example applications for track structure simulations in liquid water: A report from the Geant4-DNA Project Med. Phys. 45 8 722 739 Search in Google Scholar

Moradi, F., Jalili, M., Rezaee Enrahim Saraee, Kh., Khandaker, M. U., & Bradley, D. A. (2022). Geant4 track structure simulation of electron beam interaction with a gold nanoparticle. Radiat. Phys. Chem., 200, 110278. MoradiF. JaliliM. Rezaee Enrahim SaraeeKh. KhandakerM. U. BradleyD. A. 2022 Geant4 track structure simulation of electron beam interaction with a gold nanoparticle Radiat. Phys. Chem. 200 110278 Search in Google Scholar

Plante, I., & Cucinotta, F. A. (2009). Cross sections for the interactions of 1 eV–100 MeV electrons in liquid water and application to Monte Carlo simulation of HZE radiation tracks. New J. Phys., 11, 63047. PlanteI. CucinottaF. A. 2009 Cross sections for the interactions of 1 eV–100 MeV electrons in liquid water and application to Monte Carlo simulation of HZE radiation tracks New J. Phys. 11 63047 Search in Google Scholar

Faddegon, B., Ramos-Méndez, J., Schuemann, J., McNamara, A., Shin, J., Perl, J., & Paganetti, H. (2020). The TOPAS tool for particle simulation, a Monte Carlo simulation tool for physics, biology and clinical research. Phys. Med., 72, 114–121. FaddegonB. Ramos-MéndezJ. SchuemannJ. McNamaraA. ShinJ. PerlJ. PaganettiH. 2020 The TOPAS tool for particle simulation, a Monte Carlo simulation tool for physics, biology and clinical research Phys. Med. 72 114 121 Search in Google Scholar

International Commission on Radiation Units and Measurements. (1989). Tissue substitutes in radiation units and measurement. Bethesda, USA: ICRU. (ICRU Report No. 44). International Commission on Radiation Units and Measurements 1989 Tissue substitutes in radiation units and measurement Bethesda, USA ICRU (ICRU Report No. 44). Search in Google Scholar

Robar, J. L., Riccio, S. A., & Martin, M. A. (2002). Tumour dose enhancement using modified megavoltage photon beams and contrast media. Phys. Med. Biol., 47, 2433–2449. RobarJ. L. RiccioS. A. MartinM. A. 2002 Tumour dose enhancement using modified megavoltage photon beams and contrast media Phys. Med. Biol. 47 2433 2449 Search in Google Scholar

Butterworth, K. T., McMahon, S. J., Currell, F. J., & Prise, K. M. (2012). Physical basis and biological mechanisms of gold nanoparticle radiosensitization. Nanoscale, 4, 4830–4838. ButterworthK. T. McMahonS. J. CurrellF. J. PriseK. M. 2012 Physical basis and biological mechanisms of gold nanoparticle radiosensitization Nanoscale 4 4830 4838 Search in Google Scholar

Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Chimica, Chimica nucleare, Fisica, Astronomia ed astrofisica, Fisica, altro