This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Kakade, N. R., & Sharma, S. D. (2015). Dose enhancement in gold nanoparticle-aided radiotherapy for the therapeutic photon beams using Monte Carlo technique. J. Cancer Res. Ther., 11, 94–97.KakadeN. R.SharmaS. D.2015Dose enhancement in gold nanoparticle-aided radiotherapy for the therapeutic photon beams using Monte Carlo techniqueJ. Cancer Res. Ther.119497Search in Google Scholar
Haume, K., Rosa, S., Grellet, S., Smialek, M. A., Butterworth, K. T., Solov’yov, A. V., Prise, K. M., Golding, J., & Mason, N. J. (2016). Gold nanoparticles for cancer radiotherapy: a review. Cancer Nano., 7, 8.HaumeK.RosaS.GrelletS.SmialekM. A.ButterworthK. T.Solov’yovA. V.PriseK. M.GoldingJ.MasonN. J.2016Gold nanoparticles for cancer radiotherapy: a reviewCancer Nano.78Search in Google Scholar
Kwatra, D., Venugopal, A., & Anant, S. (2013). Nanoparticles in radiation therapy: a summary of various approaches to enhance radiosensitization in cancer. Transl. Cancer Res., 2(4), 330–342.KwatraD.VenugopalA.AnantS.2013Nanoparticles in radiation therapy: a summary of various approaches to enhance radiosensitization in cancerTransl. Cancer Res.24330342Search in Google Scholar
Kobayashi, K., Usami, N., Porcel, E., Lacombe, S., & Le Sech, C. (2010). Enhancement of radiation effect by heavy elements. Rev. Mutat. Res., 704(1/3), 123–131.KobayashiK.UsamiN.PorcelE.LacombeS.Le SechC.2010Enhancement of radiation effect by heavy elementsRev. Mutat. Res.7041/3123131Search in Google Scholar
Pan, Y., Leifert, A., Ruau, D., Neuss, S., Bornemann, J., Schmid, G., Brandau, W., Simon, U., & Jahnen Dechent, W. (2009). Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small, 5(18), 2067–2076.PanY.LeifertA.RuauD.NeussS.BornemannJ.SchmidG.BrandauW.SimonU.Jahnen DechentW.2009Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damageSmall51820672076Search in Google Scholar
Taggart, L. E., McMahon, S. J., Currell, F. J., Prise, K. M., & Butterworth, K. T. (2014). The role of mitochondrial function in gold nanoparticle mediated radiosensitisation. Cancer Nanotechnol., 5(1), 5.TaggartL. E.McMahonS. J.CurrellF. J.PriseK. M.ButterworthK. T.2014The role of mitochondrial function in gold nanoparticle mediated radiosensitisationCancer Nanotechnol.515Search in Google Scholar
Taggart, L. E., McMahon, S. J., Butterworth, K. T., Currell, F. J., Schettino, G., & Prise, K. M. (2016). Protein disulphide isomerase as a target for nanoparticle-mediated sensitisation of cancer cells to radiation. Nanotechnology, 27(21), 215101.TaggartL. E.McMahonS. J.ButterworthK. T.CurrellF. J.SchettinoG.PriseK. M.2016Protein disulphide isomerase as a target for nanoparticle-mediated sensitisation of cancer cells to radiationNanotechnology2721215101Search in Google Scholar
Kavanagh, J. N., Redmond, K. M., Schettino, G., & Prise, K. M. (2013). DNA double strand break repair: a radiation perspective. Antioxid. Redox Signal., 18(18), 2458–2472.KavanaghJ. N.RedmondK. M.SchettinoG.PriseK. M.2013DNA double strand break repair: a radiation perspectiveAntioxid. Redox Signal.181824582472Search in Google Scholar
Nikjoo, H., O’Neill, P., Wilson, W. E., & Goodhead, D. T. (2001). Computational approach for determining the spectrum of DNA damage induced by ionizing radiation. Radiat. Res., 156(5), 577–583.NikjooH.O’NeillP.WilsonW. E.GoodheadD. T.2001Computational approach for determining the spectrum of DNA damage induced by ionizing radiationRadiat. Res.1565577583Search in Google Scholar
Emfietzoglou, D., Cucinotta, F. A., & Nikjoo, H. (2005). A complete dielectric response model for liquid water: a solution of the Bethe ridge problem. Radiat Res., 164(2), 202–211.EmfietzoglouD.CucinottaF. A.NikjooH.2005A complete dielectric response model for liquid water: a solution of the Bethe ridge problemRadiat Res.1642202211Search in Google Scholar
Pan, X., Cloutier, P., Hunting, D., & Sanche, L. (2003). Dissociative electron attachment to DNA. Phys. Rev. Lett., 90, 208102.PanX.CloutierP.HuntingD.SancheL.2003Dissociative electron attachment to DNAPhys. Rev. Lett.90208102Search in Google Scholar
Porcel, E., Liehn, S., Remita, H., Usami, N., Kobayashi, K., Furusawa, Y., Le Sech, C., & Lacombe, S. (2010). Platinum nanoparticles: a promising material for future cancer therapy? Nanotechnology, 21, 085103.PorcelE.LiehnS.RemitaH.UsamiN.KobayashiK.FurusawaY.Le SechC.LacombeS.2010Platinum nanoparticles: a promising material for future cancer therapy?Nanotechnology21085103Search in Google Scholar
Verkhovtsev, A. V., Korol, A. V., & Solov’yov, A. V. (2015). Electron production by sensitizing gold nanoparticles irradiated by fast ions. J. Phys. Chem. C, 119(20), 11000–11013.VerkhovtsevA. V.KorolA. V.Solov’yovA. V.2015Electron production by sensitizing gold nanoparticles irradiated by fast ionsJ. Phys. Chem. C119201100011013Search in Google Scholar
Butterworth, K. T., McMahon, S. J., Taggart, L. E., & Prise, K. M. (2013). Radiosensitization by gold nanoparticles: effective at megavoltage energies and potential role of oxidative stress. Transl. Cancer Res., 2(4), 269–279.ButterworthK. T.McMahonS. J.TaggartL. E.PriseK. M.2013Radiosensitization by gold nanoparticles: effective at megavoltage energies and potential role of oxidative stressTransl. Cancer Res.24269279Search in Google Scholar
Moradi, F., Rezaee Enrahim Saraee, Kh., Abdul Sani, S. F., & Bradley, D. A. (2021). Metallic nanoparticle radiosensitization: The role of Monte Carlo simulations towards progress. Radiat. Phys. Chem., 180, 109294.MoradiF.Rezaee Enrahim SaraeeKh.Abdul SaniS. F.BradleyD. A.2021Metallic nanoparticle radiosensitization: The role of Monte Carlo simulations towards progressRadiat. Phys. Chem.180109294Search in Google Scholar
Hainfeld, J. F., Dilmanian, F. A., Slatkin, D. N., & Smilowitz, H. M. (2008). Radiotherapy enhancement with gold nanoparticles. J. Pharm. Pharmacol., 60(8), 977–985.HainfeldJ. F.DilmanianF. A.SlatkinD. N.SmilowitzH. M.2008Radiotherapy enhancement with gold nanoparticlesJ. Pharm. Pharmacol.608977985Search in Google Scholar
Taheri, A., Khandaker, M. U., Moradi, F., & Bradley, D. A. (2024). A simulation study on the radiosensitization properties of gold nanorods. Phys. Med. Biol., 69, 045029.TaheriA.KhandakerM. U.MoradiF.BradleyD. A.2024A simulation study on the radiosensitization properties of gold nanorodsPhys. Med. Biol.69045029Search in Google Scholar
He, W., Ma, G., Shen, Q., & Tang, Z. (2022). Engineering gold nanostructures for cancer treatment: spherical nanoparticles, nanorods, and atomically precise nanoclusters. Nanomaterials, 12, 1738.HeW.MaG.ShenQ.TangZ.2022Engineering gold nanostructures for cancer treatment: spherical nanoparticles, nanorods, and atomically precise nanoclustersNanomaterials121738Search in Google Scholar
Her, S., Jaffray, D. A., & Allen, C. (2017). Gold nanoparticles for applications in cancer radiotherapy: Mechanisms and recent advancements. Adv. Drug Deliv. Rev., 109, 84–101.HerS.JaffrayD. A.AllenC.2017Gold nanoparticles for applications in cancer radiotherapy: Mechanisms and recent advancementsAdv. Drug Deliv. Rev.10984101Search in Google Scholar
Çağlar, M., Eşitmez, D., & Cebe, M. S. (2024). The effect of dose enhancement in tumor with silver nanoparticles on surrounding healthy tissues: A Monte Carlo study. Technology in Cancer Research & Treatment, 23, 1–8.ÇağlarM.EşitmezD.CebeM. S.2024The effect of dose enhancement in tumor with silver nanoparticles on surrounding healthy tissues: A Monte Carlo studyTechnology in Cancer Research & Treatment2318Search in Google Scholar
Wu, J. (2021). The enhanced permeability and retention (Epr) effect: The significance of the concept and methods to enhance its application. J. Pers. Med., 11(8), 771–779.WuJ.2021The enhanced permeability and retention (Epr) effect: The significance of the concept and methods to enhance its applicationJ. Pers. Med.118771779Search in Google Scholar
Matsumura, Y., & Maeda, H. (1986). A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res., 46(8), 6387–6392.MatsumuraY.MaedaH.1986A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancsCancer Res.46863876392Search in Google Scholar
Mesbahi, A. (2010). A review on gold nanoparticles radiosensitization effect in radiation therapy of cancer. Rep. Pract. Oncol. Radiother., 15(6), 176–180.MesbahiA.2010A review on gold nanoparticles radiosensitization effect in radiation therapy of cancerRep. Pract. Oncol. Radiother.156176180Search in Google Scholar
Martelli, S., & Chow, J. C. L. (2020). Dose enhancement for the flattening-filter-free and flattening-filter photon beams in nanoparticle-enhanced radiotherapy: A Monte Carlo phantom study. Nanomaterials, 10, 637.MartelliS.ChowJ. C. L.2020Dose enhancement for the flattening-filter-free and flattening-filter photon beams in nanoparticle-enhanced radiotherapy: A Monte Carlo phantom studyNanomaterials10637Search in Google Scholar
Cho, S. H. (2005). Estimation of tumour dose enhancement due to gold nanoparticles during typical radiation treatments: A preliminary Monte Carlo study. Phys. Med. Biol., 50, N163–N173.ChoS. H.2005Estimation of tumour dose enhancement due to gold nanoparticles during typical radiation treatments: A preliminary Monte Carlo studyPhys. Med. Biol.50N163N173Search in Google Scholar
Chow, J. C. L., & Jubran, S. (2023). Depth dose enhancement in orthovoltage nanoparticle-enhanced radiotherapy: A Monte Carlo phantom study. Micromachines, 14, 1230.ChowJ. C. L.JubranS.2023Depth dose enhancement in orthovoltage nanoparticle-enhanced radiotherapy: A Monte Carlo phantom studyMicromachines141230Search in Google Scholar
McMahon, S. J., Hyland, W. B., Muir, M. F., Coulter, J. A., Jain, S., Butterworth, K. T., Schettino, G., Dickson, G. R., Hounsell, A. R., O’Sullivan, J. M., Prise, K. M., Hirst, D. G., & Currell, F. J. (2011). Nanodosimetric effects of gold nanoparticles in megavoltage radiation therapy. Radiother. Oncol., 100(3), 412–416.McMahonS. J.HylandW. B.MuirM. F.CoulterJ. A.JainS.ButterworthK. T.SchettinoG.DicksonG. R.HounsellA. R.O’SullivanJ. M.PriseK. M.HirstD. G.CurrellF. J.2011Nanodosimetric effects of gold nanoparticles in megavoltage radiation therapyRadiother. Oncol.1003412416Search in Google Scholar
Malam, Y., Loizidou, M., & Seifalian, A. M. (2009). Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trend Pharmacol. Sci., 30(11), 592–599.MalamY.LoizidouM.SeifalianA. M.2009Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancerTrend Pharmacol. Sci.3011592599Search in Google Scholar
Barreto, J. A., O’Malley, W., Kubeil, M., Graham, B., Stephan, H., & Spiccia, L. (2011). Nanomaterials: applications in cancer imaging and therapy. Adv. Mater., 23(12), 18–40.BarretoJ. A.O’MalleyW.KubeilM.GrahamB.StephanH.SpicciaL.2011Nanomaterials: applications in cancer imaging and therapyAdv. Mater.23121840Search in Google Scholar
Carter, J. D., Cheng, N. N., Qu, Y., Suarez, G. D., & Guo, T. (2007). Nanoscale energy deposition by X-ray absorbing nanostructures. J. Phys. Chem. B, 111, 11622–11625.CarterJ. D.ChengN. N.QuY.SuarezG. D.GuoT.2007Nanoscale energy deposition by X-ray absorbing nanostructuresJ. Phys. Chem. B1111162211625Search in Google Scholar
Liu, C. -J., Wang, C. -H., Chen, S. -T., Chen, H. -H., Leng, W. -H., Chien, C. -C., Wang, C. -L., Kempson, M., Hwu, Y., Lai, T. -C., Hsiao, M., Yang, C. -S., Chen, Y. -J., & Margaritondo, G. (2010). Enhancement of cell radiation sensitivity by pegylated gold nanoparticles. Phys. Med. Biol., 55, 931–945.LiuC. -J.WangC. -H.ChenS. -T.ChenH. -H.LengW. -H.ChienC. -C.WangC. -L.KempsonM.HwuY.LaiT. -C.HsiaoM.YangC. -S.ChenY. -J.MargaritondoG.2010Enhancement of cell radiation sensitivity by pegylated gold nanoparticlesPhys. Med. Biol.55931945Search in Google Scholar
Zhao, P., Li, N., & Astruc, D. (2013). State of the art in gold nanoparticle synthesis. Coord. Chem. Rev., 257, 638–665.ZhaoP.LiN.AstrucD.2013State of the art in gold nanoparticle synthesisCoord. Chem. Rev.257638665Search in Google Scholar
Alkilany, A. M., Thompson, L. B., Boulos, S. P., Sisco, P. N., & Murphy, C. J. (2012). Gold nanorods: their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions. Adv. Drug Deliv. Rev., 64, 190–199.AlkilanyA. M.ThompsonL. B.BoulosS. P.SiscoP. N.MurphyC. J.2012Gold nanorods: their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactionsAdv. Drug Deliv. Rev.64190199Search in Google Scholar
Gray, T., Bassiri, N., David, S., Patel, D. Y., Stathakis, S., Kirby, N., & Mayer, K. M. (2021). A detailed experimental and Monte Carlo analysis of gold nanoparticle dose enhancement using 6 MV and 18 MV external beam energies in a macroscopic scale. Appl. Radiat. Isot., 171, 109638.GrayT.BassiriN.DavidS.PatelD. Y.StathakisS.KirbyN.MayerK. M.2021A detailed experimental and Monte Carlo analysis of gold nanoparticle dose enhancement using 6 MV and 18 MV external beam energies in a macroscopic scaleAppl. Radiat. Isot.171109638Search in Google Scholar
Khodaei, A., Moradi, F., Oresegum, A., Zubair, H. T., Bradley, D. A., Ibrahim, A. S., & Abdul Rashid, H. A. (2024). Evaluation of TOPAS MC tool performance in optical photon transport and radioluminescence-based dosimetry. Biomed. Phys. Eng. Express, 10, 055034.KhodaeiA.MoradiF.OresegumA.ZubairH. T.BradleyD. A.IbrahimA. S.Abdul RashidH. A.2024Evaluation of TOPAS MC tool performance in optical photon transport and radioluminescence-based dosimetryBiomed. Phys. Eng. Express10055034Search in Google Scholar
Emfietzoglou, D., & Nikjoo, H. (2005). The effect of model approximations on single-collision distributions of low-energy electrons in liquid water. Radiat. Res., 163(1), 98–111.EmfietzoglouD.NikjooH.2005The effect of model approximations on single-collision distributions of low-energy electrons in liquid waterRadiat. Res.163198111Search in Google Scholar
Incerti, S., Kyriakou, I., Bernal, M. A., Bordage, M. C., Francis, Z., Guatelli, S., Ivanchenko, V., Karamitros, M., Lampe, N., Lee, S. B., Meylan, S., Min, C. H., Shin, W. G., Nieminen, P., Sakata, D., Tang, N., Villagrasa, C., Tran, H. N., & Brown, J. M. C. (2018). Geant4-DNA example applications for track structure simulations in liquid water: A report from the Geant4-DNA Project. Med. Phys., 45(8), 722–739.IncertiS.KyriakouI.BernalM. A.BordageM. C.FrancisZ.GuatelliS.IvanchenkoV.KaramitrosM.LampeN.LeeS. B.MeylanS.MinC. H.ShinW. G.NieminenP.SakataD.TangN.VillagrasaC.TranH. N.BrownJ. M. C.2018Geant4-DNA example applications for track structure simulations in liquid water: A report from the Geant4-DNA ProjectMed. Phys.458722739Search in Google Scholar
Moradi, F., Jalili, M., Rezaee Enrahim Saraee, Kh., Khandaker, M. U., & Bradley, D. A. (2022). Geant4 track structure simulation of electron beam interaction with a gold nanoparticle. Radiat. Phys. Chem., 200, 110278.MoradiF.JaliliM.Rezaee Enrahim SaraeeKh.KhandakerM. U.BradleyD. A.2022Geant4 track structure simulation of electron beam interaction with a gold nanoparticleRadiat. Phys. Chem.200110278Search in Google Scholar
Plante, I., & Cucinotta, F. A. (2009). Cross sections for the interactions of 1 eV–100 MeV electrons in liquid water and application to Monte Carlo simulation of HZE radiation tracks. New J. Phys., 11, 63047.PlanteI.CucinottaF. A.2009Cross sections for the interactions of 1 eV–100 MeV electrons in liquid water and application to Monte Carlo simulation of HZE radiation tracksNew J. Phys.1163047Search in Google Scholar
Faddegon, B., Ramos-Méndez, J., Schuemann, J., McNamara, A., Shin, J., Perl, J., & Paganetti, H. (2020). The TOPAS tool for particle simulation, a Monte Carlo simulation tool for physics, biology and clinical research. Phys. Med., 72, 114–121.FaddegonB.Ramos-MéndezJ.SchuemannJ.McNamaraA.ShinJ.PerlJ.PaganettiH.2020The TOPAS tool for particle simulation, a Monte Carlo simulation tool for physics, biology and clinical researchPhys. Med.72114121Search in Google Scholar
International Commission on Radiation Units and Measurements. (1989). Tissue substitutes in radiation units and measurement. Bethesda, USA: ICRU. (ICRU Report No. 44).International Commission on Radiation Units and Measurements1989Tissue substitutes in radiation units and measurementBethesda, USAICRU(ICRU Report No. 44).Search in Google Scholar
Robar, J. L., Riccio, S. A., & Martin, M. A. (2002). Tumour dose enhancement using modified megavoltage photon beams and contrast media. Phys. Med. Biol., 47, 2433–2449.RobarJ. L.RiccioS. A.MartinM. A.2002Tumour dose enhancement using modified megavoltage photon beams and contrast mediaPhys. Med. Biol.4724332449Search in Google Scholar
Butterworth, K. T., McMahon, S. J., Currell, F. J., & Prise, K. M. (2012). Physical basis and biological mechanisms of gold nanoparticle radiosensitization. Nanoscale, 4, 4830–4838.ButterworthK. T.McMahonS. J.CurrellF. J.PriseK. M.2012Physical basis and biological mechanisms of gold nanoparticle radiosensitizationNanoscale448304838Search in Google Scholar