Accesso libero

Computer-simulated degradation of CF3Cl, CF2Cl2, and CFCl3 under electron beam irradiation

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Xiao, G., Xu, W., Wu, R., Ni, M., Du, C., Gao, X., Luo, Z., & Cen, K. (2014). Non-thermal plasmas for VOCs abatement. Plasma Chem. Plasma Process., 34(5), 1033–1065. https://doi.org/10.1007/s11090- 014-9562-0. Xiao G. Xu W. Wu R. Ni M. Du C. Gao X. Luo Z. Cen K. ( 2014 ). Non-thermal plasmas for VOCs abatement . Plasma Chem. Plasma Process ., 34 ( 5 ), 1033 1065 . https://doi.org/10.1007/s11090-014-9562-0. Search in Google Scholar

Chmielewski, A. G. (1995). Electron beam gaseous pollutants treatment. In International Conference on Plasma Science, 5–8 June 1995, Madison, WI, USA (p. 269). DOI: 10.1109/PLASMA.1995.533498. Chmielewski A. G. ( 1995 ). Electron beam gaseous pollutants treatment . In International Conference on Plasma Science, 5–8 June 1995 , Madison, WI, USA (p. 269). DOI: 10.1109/PLASMA.1995.533498 . Open DOISearch in Google Scholar

Denifl, G., Muigg, D., Walker, I., Cicman, P. T., Matejcik, S., Skalny, J. D., Stamatovic, A., & Märk, T. D. (1999). Dissociative electron attachment to CF2Cl2. Czech. J. Phys., 49(3), 383–392. https://doi.org/10.1023/A:1022857202672. Denifl G. Muigg D. Walker I. Cicman P. T. Matejcik S. Skalny J. D. Stamatovic A. Märk T. D. ( 1999 ). Dissociative electron attachment to CF2Cl2 . Czech. J. Phys ., 49 ( 3 ), 383 392 . https://doi.org/10.1023/A:1022857202672. Search in Google Scholar

Wang, Y. F., Lee, W. J., Chen, C. Y., Wu, Y. P. G., & Chang-Chien, G. P. (2000). Reaction mechanisms in both a CCl2F2/O2/Ar and a CCl2F2/H2/Ar RF plasma environment. Plasma Chem. Plasma Process., 20(4), 469–494. https://doi.org/10.1023/A:1007027805680. Wang Y. F. Lee W. J. Chen C. Y. Wu Y. P. G. Chang-Chien G. P. ( 2000 ). Reaction mechanisms in both a CCl2F2/O2/Ar and a CCl2F2/H2/Ar RF plasma environment . Plasma Chem. Plasma Process ., 20 ( 4 ), 469 494 . https://doi.org/10.1023/A:1007027805680. Search in Google Scholar

Stoiber, T., Evans, S., & Naidenko, O. V. (2020). Disposal of products and materials containing per- and polyfluoroalkyl substances (PFAS): A cyclical problem. Chemosphere, 260, 127659. https://doi.org/10.1016/j.chemosphere.2020.127659. Stoiber T. Evans S. Naidenko O. V. ( 2020 ). Disposal of products and materials containing per and polyfluoroalkyl substances (PFAS): A cyclical problem . Chemosphere , 260 , 127659 . https://doi.org/10.1016/j.chemosphere.2020.127659. Search in Google Scholar

Ross, I., McDonough, J., Miles, J., Storch, P., Thelak- kat Kochunarayanan, P., Kalve, E., Hurst, J., Das- gupta, S., & Burdick, J. (2018). A review of emerging technologies for remediation of PFASs. Remediation, 28(2), 101–126. https://doi.org/10.1002/rem.21553. Ross I. McDonough J. Miles J. Storch P. Thelakkat Kochunarayanan P. Kalve E. Hurst J. Dasgupta S. Burdick J. ( 2018 ). A review of emerging technologies for remediation of PFASs . Remediation , 28 ( 2 ), 101 126 . https://doi.org/10.1002/rem.21553. Search in Google Scholar

Dahiru, U. H., Saleem, F., Zhang, K., & Harvey, A. P. (2021). Removal of cyclohexane as a toxic pollutant from air using a non-thermal plasma: Influence of different parameters. J. En iron. Chem. Eng., 9(1), 105023. https://doi.org/10.1016/j.jece.2021.105023. Dahiru U. H. Saleem F. Zhang K. Harvey A. P. ( 2021 ). Removal of cyclohexane as a toxic pollutant from air using a non-thermal plasma: Influence of different parameters . J. Environ. Chem. Eng ., 9 ( 1 ), 105023 . https://doi.org/10.1016/j.jece.2021.105023. Search in Google Scholar

Hakoda, T., Hashimoto, S., & Kojima, T. (2002). Ef- fect of water and oxygen contents on the decomposi- tion of gaseous trichloroethylene in air under electron beam irradiation. Bull. Chem. Soc. Jpn., 75(10). https://doi.org/10.1246/bcsj.75.2177. Hakoda T. Hashimoto S. Kojima T. ( 2002 ). Effect of water and oxygen contents on the decomposition of gaseous trichloroethylene in air under electron beam irradiation . Bull. Chem. Soc. Jpn ., 75 ( 10 ). https://doi.org/10.1246/bcsj.75.2177. Search in Google Scholar

Hirota, K., Hakoda, T., Arai, H., & Hashimoto, S. (2002). Electron-beam decomposition of vaporized VOCs in air. Radiat. Phys. Chem., 65(4/5), 415–421. https://doi.org/10.1016/S0969-806X(02)00353-5. Hirota K. Hakoda T. Arai H. Hashimoto S. ( 2002 ). Electron-beam decomposition of vaporized VOCs in air . Radiat. Phys. Chem ., 65 ( 4/5 ), 415 421 . https://doi.org/10.1016/S0969-806X(02)00353-5. Search in Google Scholar

Kim, H. H., Prieto, G., Takashima, K., Katsura, S., & Mizuno, A. (2002). Performance evaluation of dis- charge plasma process for gaseous pollutant removal. J. Electrost., 55(1), 25–41. https://doi.org/10.1016/S0304-3886(01)00182-6. Kim H. H. Prieto G. Takashima K. Katsura S. Mizuno A. ( 2002 ). Performance evaluation of discharge plasma process for gaseous pollutant removal . J. Electrost ., 55 ( 1 ), 25 41 . https://doi.org/10.1016/S0304-3886(01)00182-6. Search in Google Scholar

Dobslaw, C., & Glocker, B. (2020). Plasma tech- nology and its relevance in waste air and waste gas treatment. Sustainability, 12(21), 1–39. https://doi.org/10.3390/su12218981. Dobslaw C. Glocker B. ( 2020 ). Plasma technology and its relevance in waste air and waste gas treatment . Sustainability , 12 ( 21 ), 1 39 . https://doi.org/10.3390/su12218981. Search in Google Scholar

Cooper, R., & Mezyk, S. P. (2001). Fundamental processes in gas phase radiation chemistry. Studies in Physical and Theoretical Chemistry C, 87, 107–144. https://doi.org/10.1016/S0167-6881(01)80008-2. Cooper R. Mezyk S. P. ( 2001 ). Fundamental processes in gas phase radiation chemistry . Studies in Physical and Theoretical Chemistry C , 87 , 107 144 . https://doi.org/10.1016/S0167-6881(01)80008-2. Search in Google Scholar

Chmielewski, A. G., Sun, Y., Licki, J., Pawelec, A., Wit- man, S., & Zimek, Z. (2012). Electron beam treatment of high NOx concentration off-gases. Radiat. Phys. Chem., 81(8), 1036–1039. https://doi.org/10.1016/j.radphyschem.2011.12.012. Chmielewski A. G. Sun Y. Licki J. Pawelec A. Witman S. Zimek Z. ( 2012 ). Electron beam treatment of high NOx concentration off-gases . Radiat. Phys. Chem ., 81 ( 8 ), 1036 1039 . https://doi.org/10.1016/j.radphyschem.2011.12.012. Search in Google Scholar

Kashiwagi, M., & Hoshi, Y. (2012). Electron beam processing system and its application. SEI Tech. Re ., 75, 47–54. Kashiwagi M. Hoshi Y. ( 2012 ). Electron beam processing system and its application . SEI Tech. Rev ., 75 , 47 54 . Search in Google Scholar

Gogulancea, V., & Lavric, V. (2014). Flue gas cleaning by high energy electron beam – modeling and sensitivity analysis. Appl. Therm. Eng., 70(2), 1253–1261. https://doi.org/10.1016/j.applthermaleng.2014.05.046. Gogulancea V. Lavric V. ( 2014 ). Flue gas cleaning by high energy electron beam – modeling and sensitivity analysis . Appl. Therm. Eng ., 70 ( 2 ), 1253 1261 . https://doi.org/10.1016/j.applthermaleng.2014.05.046. Search in Google Scholar

Illenberger, E. (1992). Electron-attachment reactions in molecular clusters. Chem. Re ., 92(7), 1589–1609. https://doi.org/10.1021/cr00015a006. Illenberger E. ( 1992 ). Electron-attachment reactions in molecular clusters . Chem. Rev ., 92 ( 7 ), 1589 1609 . https://doi.org/10.1021/cr00015a006. Search in Google Scholar

Jones, R. K. (1984). Absolute total cross section for the scattering of low energy electrons by methane. J. Chem. Phys., 82(12), 5424–5427. https://doi.org/10.1063/1.448575. Jones R. K. ( 1984 ). Absolute total cross section for the scattering of low energy electrons by methane . J. Chem. Phys ., 82 ( 12 ), 5424 5427 . https://doi.org/10.1063/1.448575. Search in Google Scholar

Won, Y. S., Han, D. H., Stuchinskaya, T., Park, W. S., & Lee, H. S. (2002). Electron beam treatment of chloroethylenes/air mixture in a flow reactor. Radiat. Phys. Chem., 63(2), 165–175. https://doi.org/10.1016/S0969-806X(01)00237-7. Won Y. S. Han D. H. Stuchinskaya T. Park W. S. Lee H. S. ( 2002 ). Electron beam treatment of chloroethylenes/air mixture in a flow reactor . Radiat. Phys. Chem ., 63 ( 2 ), 165 175 . https://doi.org/10.1016/S0969-806X(01)00237-7. Search in Google Scholar

Kim, J., Han, B., Kim, Y., Lee, J. H., Park, C. R., Kim, J. C., Kim, J. C., & Kim, K. J. (2004). Removal of VOCs by hybrid electron beam reactor with catalyst bed. Radiat. Phys. Chem., 71(1/2), 429–432. https://doi.org/10.1016/J.RADPHYSCHEM.2004.04.015. Kim J. Han B. Kim Y. Lee J. H. Park C. R. Kim J. C. Kim J. C. Kim K. J. ( 2004 ). Removal of VOCs by hybrid electron beam reactor with catalyst bed . Radiat. Phys. Chem ., 71 ( 1/2 ), 429 432 . https://doi.org/10.1016/J.RADPHYSCHEM.2004.04.015. Search in Google Scholar

Han, D. H., Stuchinskaya, T., Won, Y. S., Park, W. S., & Lim, J. K. (2003). Oxidative decomposition of aromatic hydrocarbons by electron beam irradia- tion. Radiat. Phys. Chem., 67(1), 51–60. https://doi.org/10.1016/S0969-806X(02)00405-X. Han D. H. Stuchinskaya T. Won Y. S. Park W. S. Lim J. K. ( 2003 ). Oxidative decomposition of aromatic hydrocarbons by electron beam irradiation . Radiat. Phys. Chem ., 67 ( 1 ), 51 60 . https://doi.org/10.1016/S0969-806X(02)00405-X. Search in Google Scholar

Nichipor, H., Yacko, S., Sun, Y., Chmielewski, A. G., & Zimek, Z. (2008). Theoretical study of dose and dose rate effect on trichloroethylene (HClC=CCl2) decomposition in dry and humid air under electron beam irradiation. Nukleonika, 53(1), 11–16. Nichipor H. Yacko S. Sun Y. Chmielewski A. G. Zimek Z. ( 2008 ). Theoretical study of dose and dose rate effect on trichloroethylene (HClC=CCl2) decomposition in dry and humid air under electron beam irradiation . Nukleonika , 53 ( 1 ), 11 16 . Search in Google Scholar

Fabian, P., & Borchers, R. (2001). Growth of halo- carbon abundances in the stratosphere between 1977 and 1999. Ad?. Space Res., 28(7), 961–964. https://doi.org/10.1016/S0273-1177(01)80024-7. Fabian P. Borchers R. ( 2001 ). Growth of halocarbon abundances in the stratosphere between 1977 and 1999 . Adv. Space Res ., 28 ( 7 ), 961 964 . https://doi.org/10.1016/S0273-1177(01)80024-7. Search in Google Scholar

Midgley, P. M., & McCulloch, A. (1999). Production, sales and emissions of halocarbons from industrial sources. In P. Fabian & O. N. Singh (Eds.). Reac- ti e halogen compounds in the atmosphere. (The Handbook of Environmental Chemistry, Vol. 4E, pp. 155–190). Berlin, Heidelberg: Springer. https://doi.org/10.1007/10628761_6. Midgley P. M. McCulloch A. ( 1999 ). Production, sales and emissions of halocarbons from industrial sources . In Fabian P. Singh O. N. (Eds.). Reactive halogen compounds in the atmosphere. (The Handbook of Environmental Chemistry , Vol. 4E , pp. 155 190 ). Berlin, Heidelberg : Springer . https://doi.org/10.1007/10628761_6. Search in Google Scholar

Foglein, K. A., Szépvölgyi, J., Szabó, P. T., Mészáros, E., Pekker-Jakab, E., Babievskaya, I. Z., Mohai, I., & Károly, Z. (2005). Comparative study on decompo- sition of CFCl3 in thermal and cold plasma. Plasma Chem. Plasma Process., 25(3), 275–288. https://doi.org/10.1007/s11090-004-3040-z. Főglein K. A. Szépvölgyi J. Szabó P. T. Mészáros E. Pekker-Jakab E. Babievskaya I. Z. Mohai I. Károly Z. ( 2005 ). Comparative study on decomposition of CFCl3 in thermal and cold plasma . Plasma Chem. Plasma Process ., 25 ( 3 ), 275 288 . https://doi.org/10.1007/s11090-004-3040-z. Search in Google Scholar

Yokoi, A., Kuchar, D., Kubota, M., Liwei, H., Ushi- roebisu, K., & Matsuda, H. (2008). Comparison of non-thermal plasma decomposition characteristics of organo-halide gases under oxidizing and reducing atmosphere. Global NEST Journal, 10(2), 249–254. Yokoi A. Kuchar D. Kubota M. Liwei H. Ushiroebisu K ., & Matsuda H. ( 2008 ). Comparison of non-thermal plasma decomposition characteristics of organo-halide gases under oxidizing and reducing atmosphere . Global NEST Journal , 10 ( 2 ), 249 254 . Search in Google Scholar

Codnia, J., & Azcárate, M. L. (2006). Rate mea- surement of the reaction of CF2Cl radicals with O2. Photochem. Photobiol., 82(3), 755. https://doi.org/10.1562/2006-01-04-ra-764. Codnia J. Azcárate M. L. ( 2006 ). Rate measurement of the reaction of CF2Cl radicals with O2 . Photochem. Photobiol ., 82 ( 3 ), 755 . https://doi.org/10.1562/2006-01-04-ra-764. Search in Google Scholar

Xavier, E. S., Rocha, W. R., Da Silva, J. C. S., Dos Santos, H. F., & De Almeida, W. B. (2007). Ab initio thermodynamic study of the reaction of CF2Cl2 and CHF2Cl CFCs species with OH radical. Chem. Phys. Lett., 448(4/6), 164–172. https://doi.org/10.1016/j.cplett.2007.09.086. Xavier E. S. Rocha W. R. Da Silva J. C. S. Dos Santos H. F. De Almeida W. B. ( 2007 ). Ab initio thermodynamic study of the reaction of CF2Cl2 and CHF2Cl CFCs species with OH radical . Chem. Phys. Lett ., 448 ( 4/6 ), 164 172 . https://doi.org/10.1016/j.cplett.2007.09.086. Search in Google Scholar

Faradzhev, N. S., Perry, C. C., Kusmierek, D. O., Fairbrother, D. H., & Madey, T. E. (2004). Kinetics of electron-induced decomposition of CF2Cl2 coad- sorbed with water (ice): A comparison with CCl4. J. Chem. Phys., 121(17), 8547–8561. https://doi.org/10.1063/1.1796551. Faradzhev N. S. Perry C. C. Kusmierek D. O. Fairbrother D. H. Madey T. E. ( 2004 ). Kinetics of electron-induced decomposition of CF2Cl2 coadsorbed with water (ice): A comparison with CCl4 . J. Chem. Phys ., 121 ( 17 ), 8547 8561 . https://doi.org/10.1063/1.1796551. Search in Google Scholar

Lengyel, J., van der Linde, C., Fárník, M., & Beyer, M. K. (2016). The reaction of CF2Cl2 with gas-phase hydrated electrons. Phys. Chem. Chem. Phys., 18(34), 23910–23915. https://doi.org/10.1039/c6cp01976e. Lengyel J. van der Linde C. Fárník M. Beyer M.K. ( 2016 ). The reaction of CF2Cl2 with gas-phase hydrated electrons . Phys. Chem. Chem. Phys ., 18 ( 34 ), 23910 23915 . https://doi.org/10.1039/c6cp01976e. Search in Google Scholar

Nakayama, N., Wilson, S. C., Stadelmann, L. E., Lee, H. L. D., Cable, C. A., & Arumainayagam, C. R. (2004). Low-energy electron-induced chemis- try of CF2Cl2: Implications for the ozone hole? J. Phys. Chem. B, 108(23), 7950–7954. https://doi.org/10.1021/jp031319j. Nakayama N. Wilson S. C. Stadelmann L. E. Lee H. L. D. Cable C. A. Arumainayagam C.R. ( 2004 ). Low-energy electron-induced chemistry of CF2Cl2: Implications for the ozone hole? J. Phys. Chem. B , 108 ( 23 ), 7950 7954 . https://doi.org/10.1021/jp031319j. Search in Google Scholar

Anshumali, Winkleman, B. C., & Sheth, A. (1997). Destruction of low levels of volatile organic com- pounds in dry air streams by an electron-beam gen- erated plasma. J. Air Waste Manage. Assoc., 47(12), 1276–1283. https://doi.org/10.1080/10473289.199 7.10464071. Anshumali, Winkleman B. C. Sheth A. ( 1997 ). Destruction of low levels of volatile organic compounds in dry air streams by an electron-beam generated plasma . J. Air Waste Manage. Assoc ., 47 ( 12 ), 1276 1283 . https://doi.org/10.1080/10473289.1997.10464071. Search in Google Scholar

Yamamoto, T., & Futamura, S. (1998). Nonthermal plasma processing for controlling volatile organic com- pounds. Combust. Sci. Technol., 133(1/3), 117–133. https://doi.org/10.1080/00102209808952031. Yamamoto T. Futamura S. ( 1998 ). Nonthermal plasma processing for controlling volatile organic compounds . Combust. Sci. Technol ., 133 ( 1/3 ), 117 133 . https://doi.org/10.1080/00102209808952031. Search in Google Scholar

Nichipor, H., Dashouk, E., Chmielewski, A. G., Zimek, Z., & Bulka, S. (2000). A theoretical study on decomposition of carbon tetrachloride, trichlo- roethylene and ethyl chloride in dry air under the influence of an electron beam. Radiat. Phys. Chem., 57(3/6), 519–525. https://doi.org/10.1016/S0969- 806X(99)00454-5. Nichipor H. Dashouk E. Chmielewski A. G. Zimek Z. Bulka S. ( 2000 ). A theoretical study on decomposition of carbon tetrachloride, trichloroethylene and ethyl chloride in dry air under the influence of an electron beam . Radiat. Phys. Chem ., 57 ( 3/6 ), 519 525 . https://doi.org/10.1016/S0969-806X(99)00454-5. Search in Google Scholar

Burns, S. J., Matthews, J. M., & McFadden, D. L. (1996). Rate coefficients for dissociative electron at- tachment by halomethane compounds between 300 and 800 K. J. Phys. Chem., 100(50), 19436–19440. https://doi.org/10.1021/jp962529h. Burns S. J. Matthews J. M. McFadden D. L. ( 1996 ). Rate coefficients for dissociative electron attachment by halomethane compounds between 300 and 800 K . J. Phys. Chem ., 100 ( 50 ), 19436 19440 . https://doi.org/10.1021/jp962529h. Search in Google Scholar

Illenberger, E., Scheunemann, H. U., & Baumgär- tel, H. (1979). Negative ion formation in CF2Cl2, CF3Cl and CFCl3 following low energy (0–10 eV) impact with near monoenergetic electrons. Chem. Phys., 37(1), 21–31. https://doi.org/10.1016/0301- 0104(79)80003-8. Illenberger E. Scheunemann H. U. Baumgärtel H. ( 1979 ). Negative ion formation in CF2Cl2, CF3Cl and CFCl3 following low energy (0–10 eV) impact with near monoenergetic electrons . Chem. Phys ., 37 ( 1 ), 21 31 . https://doi.org/10.1016/0301-0104(79)80003-8. Search in Google Scholar

Klar, D., Ruf, M. W., & Hotop, H. (2001). Dissociative electron attachment to CCl4 molecules at low electron energies with meV resolution. Int. J. Mass Spectrom., 205(1/3), 93–110. https://doi.org/10.1016/S1387- 3806(00)00271-2. Klar D. Ruf M. W. Hotop H. ( 2001 ). Dissociative electron attachment to CCl4 molecules at low electron energies with meV resolution . Int. J. Mass Spectrom ., 205 ( 1/3 ), 93 110 . https://doi.org/10.1016/S1387-3806(00)00271-2. Search in Google Scholar

Durbin, D. E., Wentworth, W. E., & Zlatkis, A. (1970). Reactions between electron absorbing organic compounds and electrons at near thermal energies. J. Am. Chem. Soc., 92(17), 5131–5136. https://doi.org/10.1021/ja00720a023. Durbin D. E. Wentworth W. E. Zlatkis A. ( 1970 ). Reactions between electron absorbing organic compounds and electrons at near thermal energies . J. Am. Chem. Soc ., 92 ( 17 ), 5131 5136 . https://doi.org/10.1021/ja00720a023. Search in Google Scholar

Gal, A., Ogata, A., Futamura, S., & Mizuno, K. (2003). Mechanism of the dissociation of chloro- fluorocarbons during nonthermal plasma processing in nitrogen at atmospheric pressure. J. Phys. Chem. A, 107(42), 8859–8866. https://doi.org/10.1021/jp0347769. Gal A. Ogata A. Futamura S. Mizuno K. ( 2003 ). Mechanism of the dissociation of chlorofluorocarbons during nonthermal plasma processing in nitrogen at atmospheric pressure . J. Phys. Chem. A , 107 ( 42 ), 8859 8866 . https://doi.org/10.1021/jp0347769. Search in Google Scholar

Miller, T. M. (2005). Thermal electron attachment and detachment in gases. Ad ances in Atomic, Molecular and Optical Physics, 51(5), 299–342. https://doi.org/10.1016/S1049-250X(05)51018-8. Miller T. M. ( 2005 ). Thermal electron attachment and detachment in gases . Advances in Atomic, Molecular and Optical Physics , 51 ( 5 ), 299 342 . https://doi.org/10.1016/S1049-250X(05)51018-8. Search in Google Scholar

Atkinson, R., Hansen, D. A., & Pitts, J. N. (1975). Rate constants for the reaction of OH radicals with CHF2Cl, CF2Cl2, CFCl3, and H2 over the temperature range 297-434 K. J. Chem. Phys., 63(5), 1703. https://doi.org/10.1063/1.431566. Atkinson R. Hansen D. A. Pitts J. N. ( 1975 ). Rate constants for the reaction of OH radicals with CHF2Cl, CF2Cl2, CFCl3, and H2 over the temperature range 297-434 K . J. Chem. Phys ., 63 ( 5 ), 1703 . https://doi.org/10.1063/1.431566. Search in Google Scholar

DeMore, W. B., & Bayes, K. D. (1999). Rate con- stants for the reactions of hydroxyl radical with several alkanes, cycloalkanes, and dimethyl ether. J. Phys. Chem. A, 103(15), 2649–2654. https://doi.org/10.1021/jp983273d. DeMore W. B. Bayes K. D. ( 1999 ). Rate constants for the reactions of hydroxyl radical with several alkanes, cycloalkanes, and dimethyl ether . J. Phys. Chem. A , 103 ( 15 ), 2649 2654 . https://doi.org/10.1021/jp983273d. Search in Google Scholar

Graupner, K., Haughey, S. A., Field, T. A., Mayhew, C. A., Hoffmann, T. H., May, O., Fedor, J., Allan, M., Fabrikant, I. I., Illenberger, E., Braun, M., Ruf, M. W., & Hotop, H. (2010). Low-energy electron attachment to the dichlorodifluoromethane (CCl2F2) molecule. J. Phys. Chem. A, 114(3), 1474–1484. https://doi.org/10.1021/jp9081992. Graupner K. Haughey S. A. Field T. A. Mayhew C. A. Hoffmann T. H. May O. Fedor J. Allan M. Fabrikant I. I. Illenberger E. Braun M. Ruf M. W. Hotop H. ( 2010 ). Low-energy electron attachment to the dichlorodifluoromethane (CCl2F2) molecule . J. Phys. Chem. A , 114 ( 3 ), 1474 1484 . https://doi.org/10.1021/jp9081992. Search in Google Scholar

Willis, C., Boyd, A. W., Young, M. J., & Armstrong, D. A. (1970). Radiation chemistry of gaseous oxygen: experimental and calculated yields. Can. J. Chem., 48(10), 246. https://doi.org/10.1139/v70-246. Willis C. Boyd A. W. Young M. J. Armstrong D. A. ( 1970 ). Radiation chemistry of gaseous oxygen: experimental and calculated yields . Can. J. Chem ., 48 ( 10 ), 246 . https://doi.org/10.1139/v70-246. Search in Google Scholar

Atkinson, R., Connell, P. S., Dorn, H. P., Derudder, A., & Isaksen, I. S. (1990). Halocarbon ozone depletion and global warming potentials N92-15434. In R. A. Cox & D. Wuebbles (Eds.), Scientific assessment of stratospheric ozone (Vol. 4, pp. 4.1-4.192). Scientific Assessment of Stratospheric Ozone. Atkinson R. Connell P. S. Dorn H. P. Derudder A. Isaksen I. S. ( 1990 ). Halocarbon ozone depletion and global warming potentials N92-15434 . In Cox R. A. Wuebbles D. (Eds.), Scientific assessment of stratospheric ozone (Vol. 4 , pp. 4.1 - 4.192 ). Scientific Assessment of Stratospheric Ozone . Search in Google Scholar

Harrison, J. J., Chipperfield, M. P., Dudhia, A., Cai, S., Dhomse, S., Boone, C. D., & Bernath, P. F. (2014). Satellite observations of stratospheric carbonyl fluoride. Atmos. Chem. Phys., 14(21), 11915–11933. https://doi.org/10.5194/acp-14-11915-2014. Harrison J. J. Chipperfield M. P. Dudhia A. Cai S. Dhomse S. Boone C. D. Bernath P. F. ( 2014 ). Satellite observations of stratospheric carbonyl fluoride . Atmos. Chem. Phys ., 14 ( 21 ), 11915 11933 . https://doi.org/10.5194/acp-14-11915-2014. Search in Google Scholar

Hayman, G. D., Solomon, S., Howard, C., Kanakidou, M., & Penkett, S. A. (1994). Atmospheric degradation of halocarbon substitutes. Scientific Assessment of Ozone Depletion, 37, 12.1-12.17. Hayman G. D. Solomon S. Howard C. Kanakidou M. Penkett S. A. ( 1994 ). Atmospheric degradation of halocarbon substitutes . Scientific Assessment of Ozone Depletion , 37 , 12.1 - 12.17 . Search in Google Scholar

Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J., & Wallington, T. J. (2008). Evaluated kinetic and photochemical data for atmo- spheric chemistry: Volume IV – Gas phase reactions of organic\newline halogen species. Atmos. Chem. Phys., 8(15), 4141–4496. https://doi.org/10.5194/acp-8-4141-2008. Atkinson R. Baulch D. L. Cox R. A. Crowley J. N. Hampson R. F. Hynes R. G. Jenkin M. E. Rossi M. J. Troe J. Wallington T. J. ( 2008 ). Evaluated kinetic and photochemical data for atmo-spheric chemistry: Volume IV – Gas phase reactions of organic\newline halogen species . Atmos. Chem. Phys ., 8 ( 15 ), 4141 4496 . https://doi.org/10.5194/acp-8-4141-2008. Search in Google Scholar

Burkholder, J. B., Cox, R. A., & Ravishankara, A. R. (2015). Atmospheric degradation of ozone deplet- ing substances, their substitutes, and related spe- cies. Chem. Re ., 115(10), 3704–3759. https://doi.org/10.1021/cr5006759. Burkholder J. B. Cox R. A. Ravishankara A. R. ( 2015 ). Atmospheric degradation of ozone deplet- ing substances, their substitutes, and related species . Chem. Rev ., 115 ( 10 ), 3704 3759 . https://doi.org/10.1021/cr5006759. Search in Google Scholar

Cox, R. A., Ammann, M., Crowley, J. N., Herrmann, H., Jenkin, M. E., McNeill, F. V., Wahid Mellouki, A., Rossi, M. J., Troe, J., & Wallington, T. J. (2019, April 22). IUPAC in the (real) clouds. International Union of Pure and Applied Chemistry. https://iupac.org/100/stories/iupac-in-the-clouds/. Cox R. A. Ammann M. Crowley J. N. Herrmann H. Jenkin M. E. McNeill F. V. Wahid Mellouki A. Rossi M. J. Troe J. Wallington T. J. ( 2019 , April 22 ). IUPAC in the (real) clouds. International Union of Pure and Applied Chemistry . https://iupac.org/100/stories/iupac-in-the-clouds/. Search in Google Scholar

Jeon, E. C., Kim, K. J., Kim, J. C., Kim, K. H., Chung, S. G., Sunwoo, Y., & Park, Y. K. (2008). Novel hybrid technology for VOC control using an electron beam and catalyst. Res. Chem. Intermediat., 34(8/9), 863–870. https://doi.org/10.1007/BF03036948. Jeon E. C. Kim K. J. Kim J. C. Kim K. H. Chung S. G. Sunwoo Y. Park Y. K. ( 2008 ). Novel hybrid technology for VOC control using an electron beam and catalyst . Res. Chem. Intermediat ., 34 ( 8/9 ), 863 870 . https://doi.org/10.1007/BF03036948. Search in Google Scholar

Son, Y. S., Kim, K. J., & Kim, J. C. (2010). A review on VOCs control technology using electron beam. Asian J. Atmos. En iron., 4(2), 63–71. https://doi.org/10.5572/ajae.2010.4.2.063. Son Y. S. Kim K. J. Kim J. C. ( 2010 ). A review on VOCs control technology using electron beam . Asian J. Atmos. Environ ., 4 ( 2 ), 63 71 . https://doi.org/10.5572/ajae.2010.4.2.063. Search in Google Scholar

Sun, Y., Chmielewski, A. G., Licki, J., Bulka, S., & Zimek, Z. (2009). Decomposition of organic compounds in simulated industrial off-gas by using electron beam irradiation. Radiat. Phys. Chem., 78(7/8), 721–723. https://doi.org/10.1016/j.radphy-schem.2009.03.049. Sun Y. Chmielewski A. G. Licki J. Bulka S. Zimek Z. ( 2009 ). Decomposition of organic compounds in simulated industrial off-gas by using electron beam irradiation . Radiat. Phys. Chem ., 78 ( 7/8 ), 721 723 . https://doi.org/10.1016/j.radphy-schem.2009.03.049. Search in Google Scholar

Han, D. -H. H., Stuchinskaya, T., Won, Y. -S. S., Park, W. -S. S., & Lim, J. -K. K. (2003). Oxidative decomposition of aromatic hydrocarbons by electron beam irradiation. Radiat. Phys. Chem., 67(1), 51–60. https://doi.org/10.1016/s0969-806x(02)00405-x. Han D. -H. H., Stuchinskaya T. Won Y. -S.S. , Park W. -S.S. , & Lim J. -K. K. ( 2003 ). Oxidative decomposition of aromatic hydrocarbons by electron beam irradiation . Radiat. Phys. Chem ., 67 ( 1 ), 51 60 . https://doi.org/10.1016/s0969-806x(02)00405-x. Search in Google Scholar

Hirota, K., Sakai, H., Washio, M., & Kojima, T. (2004). Application of electron beams for the treat- ment of VOC streams. Ind. Eng. Chem. Res., 43(5), 1185–1191. https://doi.org/10.1021/ie0340746. Hirota K. Sakai H. Washio M. Kojima T. ( 2004 ). Application of electron beams for the treatment of VOC streams . Ind. Eng. Chem. Res ., 43 ( 5 ), 1185 1191 . https://doi.org/10.1021/ie0340746. Search in Google Scholar

Sun, Y. X., Hakoda, T., Chmielewski, A. G., & Hashi- moto, S. (2003). Trans-1,2-dichloroethylene decom- position in low-humidity air under electron beam irradiation. Radiat. Phys. Chem., 68(5), 843–850. https://doi.org/10.1016/S0969-806X(03)00347-5. Sun Y. X. Hakoda T. Chmielewski A. G. Hashimoto S. ( 2003 ). Trans-1,2-dichloroethylene decomposition in low-humidity air under electron beam irradiation . Radiat. Phys. Chem ., 68 ( 5 ), 843 850 . https://doi.org/10.1016/S0969-806X(03)00347-5. Search in Google Scholar

Sun, Y. X., Hakoda, T., Chmielewski, A. G., Hashi- moto, S., Zimek, Z., Bulka, S., Ostapczuk, A., & Nichipor, H. (2001). Mechanism of 1,1-dichloroethyl- ene decomposition in humid air under electron beam irradiation. Radiat. Phys. Chem., 62(4), 353–360. https://doi.org/10.1016/S0969-806X(01)00200-6. Sun Y. X. Hakoda T. Chmielewski A. G. , Hashimoto, S., Zimek Z. Bulka S. Ostapczuk A. Nichipor H. ( 2001 ). Mechanism of 1,1-dichloroethylene decomposition in humid air under electron beam irradiation . Radiat. Phys. Chem ., 62 ( 4 ), 353 360 . https://doi.org/10.1016/S0969-806X(01)00200-6. Search in Google Scholar

Penetrante, B. M., Hsiao, M. C., Bardsley, J. N., Mer- ritt, B. T., Vogtlin, G. E., Kuthi, A., Burkhart, C. P., & Bayless, J. R. (1997). Identification of mechanisms for decomposition of air pollutants by non-thermal plas- ma processing. Plasma Sources Sci. Technol., 6(3), 251. https://doi.org/10.1088/0963-0252/6/3/002. Penetrante B. M. Hsiao M. C. Bardsley J. N. Merritt B. T. Vogtlin G. E. Kuthi A. Burkhart C. P. Bayless J. R. ( 1997 ). Identification of mechanisms for decomposition of air pollutants by non-thermal plas- ma processing . Plasma Sources Sci. Technol ., 6 ( 3 ), 251 . https://doi.org/10.1088/0963-0252/6/3/002. Search in Google Scholar

Aleksandrov, N. L., & Bazelyan, E. M. (1999). Ionization processes in spark discharge plasmas. Plasma Sources Sci. Technol., 8(2), 285. https://doi.org/10.1088/0963-0252/8/2/309. Aleksandrov N. L. Bazelyan E. M. ( 1999 ). Ionization processes in spark discharge plasmas . Plasma Sources Sci. Technol ., 8 ( 2 ), 285 . https://doi.org/10.1088/0963-0252/8/2/309. Search in Google Scholar

Lietz, A. M., & Kushner, M. J. (2018). Molecular admixtures and impurities in atmospheric pressure plasma jets. J. Appl. Phys., 124(15), 153303. https://doi.org/10.1063/1.5049430. Lietz A. M. Kushner M. J. ( 2018 ). Molecular admixtures and impurities in atmospheric pressure plasma jets . J. Appl. Phys ., 124 ( 15 ), 153303 . https://doi.org/10.1063/1.5049430. Search in Google Scholar

Chmielewski, A. G., Sun, Y., Bulka, S., & Zimek, Z. (2007). Review on gaseous chlorinated organic pollut- ants electron beam treatment. Radiat. Phys. Chem., 76(11/12), 1795–1801. https://doi.org/10.1016/j.radphyschem.2007.02.102. Chmielewski A. G. Sun Y. Bulka S. Zimek Z. ( 2007 ). Review on gaseous chlorinated organic pollutants electron beam treatment . Radiat. Phys. Chem ., 76 ( 11/12 ), 1795 1801 . https://doi.org/10.1016/j.radphyschem.2007.02.102. Search in Google Scholar

Sun, Y., Chmielewski, A. G., Bulka, S., & Zimek, Z. (2007). 1-Chloronaphthalene decomposition in dif- ferent gas mixtures under electron beam irradiation. Radiat. Phys. Chem., 76(11/12), 1802–1805. https://doi.org/10.1016/j.radphyschem.2007.02.111. Sun Y. Chmielewski A. G. Bulka S. Zimek Z. ( 2007 ). 1-Chloronaphthalene decomposition in different gas mixtures under electron beam irradiation . Radiat. Phys. Chem ., 76 ( 11/12 ), 1802 1805 . https://doi.org/10.1016/j.radphyschem.2007.02.111. Search in Google Scholar

eISSN:
1508-5791
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Chemistry, Nuclear Chemistry, Physics, Astronomy and Astrophysics, other