Accesso libero

A Bearing Fault Diagnosis Model based on Minimum Average Composite Entropy and Parallel Attention Mechanism Convolutional Neural Network

, , ,  e   
14 ago 2025
INFORMAZIONI SU QUESTO ARTICOLO

Cita
Scarica la copertina

Zhang, T., Xu, F., Jia, M. (2022). A centrifugal fan blade damage identification method based on the multi-level fusion of vibro-acoustic signals and CNN. Measurement, 199, 111475. https://doi.org/10.1016/j.measurement.2022.111475 ZhangT. XuF. JiaM. 2022 A centrifugal fan blade damage identification method based on the multi-level fusion of vibro-acoustic signals and CNN Measurement 199 111475 https://doi.org/10.1016/j.measurement.2022.111475 Search in Google Scholar

Wang, X., Mao, D., Li, X. (2021). Bearing fault diagnosis based on vibro-acoustic data fusion and 1D-CNN network. Measurement, 173 (6), 108518. https://doi.org/10.1016/j.measurement.2020.108518 WangX. MaoD. LiX. 2021 Bearing fault diagnosis based on vibro-acoustic data fusion and 1D-CNN network Measurement 173 6 108518 https://doi.org/10.1016/j.measurement.2020.108518 Search in Google Scholar

Xu, Z., Ye, T., Chen, L., Gao, Y., Chen, Z. (2025). Health-radar: Noncontact multitarget heart rate variability detection using FMCW radar. IEEE Sensors Journal, 25 (1), 405–418. https://doi.org/10.1109/JSEN.2024.3494755 XuZ. YeT. ChenL. GaoY. ChenZ. 2025 Health-radar: Noncontact multitarget heart rate variability detection using FMCW radar IEEE Sensors Journal 25 1 405 418 https://doi.org/10.1109/JSEN.2024.3494755 Search in Google Scholar

Luo, J., Chen, Y., Huang, Q., Zhang, S., Zhang, X. (2023). Joint application of VMD and IWOA-PNN for gearbox fault classification via current signal. IEEE Sensors Journal, 23 (12), 13155–13164. https://doi.org/10.1109/JSEN.2023.3269594 LuoJ. ChenY. HuangQ. ZhangS. ZhangX. 2023 Joint application of VMD and IWOA-PNN for gearbox fault classification via current signal IEEE Sensors Journal 23 12 13155 13164 https://doi.org/10.1109/JSEN.2023.3269594 Search in Google Scholar

Chang, Y., Bao, G., Cheng, S., He, T., Yang, Q. (2021). Improved VMD-KFCM algorithm for the fault diagnosis of rolling bearing vibration signals. IET Signal Processing. https://doi.org/10.1049/sil2.12026 ChangY. BaoG. ChengS. HeT. YangQ. 2021 Improved VMD-KFCM algorithm for the fault diagnosis of rolling bearing vibration signals IET Signal Processing https://doi.org/10.1049/sil2.12026 Search in Google Scholar

Liu, G., Chen, B. (2021). The pressure characteristics analysis of oil pulsation flow based on VMD. Scientific Reports, 11, 17390. https://doi.org/10.1038/s41598-021-96860-0 LiuG. ChenB. 2021 The pressure characteristics analysis of oil pulsation flow based on VMD Scientific Reports 11 17390 https://doi.org/10.1038/s41598-021-96860-0 Search in Google Scholar

Song, M., Wang, J., Zhao, H., Li, Y. (2022). Bearing failure of reciprocating compressor sub-health recognition based on CAGOA-VMD and GRCMDE. Advances in Mechanical Engineering. https://doi.org/10.1177/16878132221082975 SongM. WangJ. ZhaoH. LiY. 2022 Bearing failure of reciprocating compressor sub-health recognition based on CAGOA-VMD and GRCMDE Advances in Mechanical Engineering https://doi.org/10.1177/16878132221082975 Search in Google Scholar

Wang, Y., Zhang, Q., Cao, R., Zhang, S., Li, S., Xu, D. (2023). The single-channel blind source separation based on VMD and Tukey M estimation for rolling bearing composite fault diagnosis. Measurement & Control, 56 (9–10). https://doi.org/10.1177/00202940231174405 WangY. ZhangQ. CaoR. ZhangS. LiS. XuD. 2023 The single-channel blind source separation based on VMD and Tukey M estimation for rolling bearing composite fault diagnosis Measurement & Control 56 9–10 https://doi.org/10.1177/00202940231174405 Search in Google Scholar

Jiang, X., Wang, J., Shi, J., Shen, C., Huang, W., Zhu, Z. (2019). A coarse-to-fine decomposing strategy of VMD for extraction of weak repetitive transients in fault diagnosis of rotating machines. Mechanical Systems and Signal Processing, 116, 668–692. https://doi.org/10.1016/j.ymssp.2018.07.014 JiangX. WangJ. ShiJ. ShenC. HuangW. ZhuZ. 2019 A coarse-to-fine decomposing strategy of VMD for extraction of weak repetitive transients in fault diagnosis of rotating machines Mechanical Systems and Signal Processing 116 668 692 https://doi.org/10.1016/j.ymssp.2018.07.014 Search in Google Scholar

Song, D., Feng, G., Qi, T., Wang, H., Pan, D., Zhang, L. (2025). A new combined transient electromagnetic noise reduction method of VMD-SVD-WTD based on improved dung beetle optimization algorithm with multi-strategy fusion. Measurement Science and Technology, 6 (1), 016105. https://doi.org/10.1088/1361-6501/ad7e42 SongD. FengG. QiT. WangH. PanD. ZhangL. 2025 A new combined transient electromagnetic noise reduction method of VMD-SVD-WTD based on improved dung beetle optimization algorithm with multi-strategy fusion Measurement Science and Technology 6 1 016105 https://doi.org/10.1088/1361-6501/ad7e42 Search in Google Scholar

Glowacz, A., Sulowicz, M., Kozik, J., Piech, K., Glowacz, W., Li, Z., Brumercik, F., Gutten, M., Korenciak, D., Kumar, A., Lucas, G. B., Irfan, M., Caesarendra, W., Liu, H. (2024). Fault diagnosis of electrical faults of three-phase induction motors using acoustic analysis. Bulletin of the Polish Academy of Sciences: Technical Sciences, 72 (1), e148440. https://doi.org/10.24425/bpasts.2024.148440 GlowaczA. SulowiczM. KozikJ. PiechK. GlowaczW. LiZ. BrumercikF. GuttenM. KorenciakD. KumarA. LucasG. B. IrfanM. CaesarendraW. LiuH. 2024 Fault diagnosis of electrical faults of three-phase induction motors using acoustic analysis Bulletin of the Polish Academy of Sciences: Technical Sciences 72 1 e148440 https://doi.org/10.24425/bpasts.2024.148440 Search in Google Scholar

Chao, Q., Tao, J., Wei, X., Wang, Y., Meng. L., Liu, C. (2020). Cavitation intensity recognition for high-speed axial piston pumps using 1-D convolutional neural networks with multi-channel inputs of vibration signals. Alexandria Engineering Journal, 59 (6), 4463–4473. https://doi.org/10.1016/j.aej.2020.07.052 ChaoQ. TaoJ. WeiX. WangY. MengL. LiuC. 2020 Cavitation intensity recognition for high-speed axial piston pumps using 1-D convolutional neural networks with multi-channel inputs of vibration signals Alexandria Engineering Journal 59 6 4463 4473 https://doi.org/10.1016/j.aej.2020.07.052 Search in Google Scholar

Bao, X., Fan, T., Shi, C., Yang, G. (2021). One-dimensional convolutional neural network for damage detection of jacket-type offshore platforms. Ocean Engineering, 219, 108293. https://doi.org/10.1016/j.oceaneng.2020.108293 BaoX. FanT. ShiC. YangG. 2021 One-dimensional convolutional neural network for damage detection of jacket-type offshore platforms Ocean Engineering 219 108293 https://doi.org/10.1016/j.oceaneng.2020.108293 Search in Google Scholar

Zeng, D., Wu, D., Huang, H., Peng, B., Wei, Y., Du, H., Zhang, P., Shi, H., Lu, Q., Cai, X. (2025). Online identification of laser welding penetration through multi-photoelectric decomposition-reconstruction and shifted-windows-based transformer deep learning framework. Measurement, 247, 116872. https://doi.org/10.1016/j.measurement.2025.116872 ZengD. WuD. HuangH. PengB. WeiY. DuH. ZhangP. ShiH. LuQ. CaiX. 2025 Online identification of laser welding penetration through multi-photoelectric decomposition-reconstruction and shifted-windows-based transformer deep learning framework Measurement 247 116872 https://doi.org/10.1016/j.measurement.2025.116872 Search in Google Scholar

Wang, L., Deng, X., Ge, P., Dong, C., Bethel, B. J., Yang, L., Xia, J. (2022). CNN-BiLSTM-attention model in forecasting wave height over south-east China seas. Computers, Materials & Continua, 73 (1), 2151–2168. https://doi.org/10.32604/cmc.2022.027415 WangL. DengX. GeP. DongC. BethelB. J. YangL. XiaJ. 2022 CNN-BiLSTM-attention model in forecasting wave height over south-east China seas Computers, Materials & Continua 73 1 2151 2168 https://doi.org/10.32604/cmc.2022.027415 Search in Google Scholar

Han, R., Wang, J., Wan, Y., Bao, J., Jiang, X., Zhang, Z., Han, B., Ji, S. (2024). Attention mechanism guided sparse filtering for mechanical intelligent fault diagnosis under variable speed condition. Measurement Science and Technology, 35, 042001. https://doi.org/10.1088/1361-6501/ad197a HanR. WangJ. WanY. BaoJ. JiangX. ZhangZ. HanB. JiS. 2024 Attention mechanism guided sparse filtering for mechanical intelligent fault diagnosis under variable speed condition Measurement Science and Technology 35 042001 https://doi.org/10.1088/1361-6501/ad197a Search in Google Scholar

Xiang, L., Wang, P., Yang, X., Hu, A., Su, H. (2021). Fault detection of wind turbine based on SCADA data analysis using CNN and LSTM with attention mechanism. Measurement, 175 (8), 109094. https://doi.org/10.1016/j.measurement.2021.109094 XiangL. WangP. YangX. HuA. SuH. 2021 Fault detection of wind turbine based on SCADA data analysis using CNN and LSTM with attention mechanism Measurement 175 8 109094 https://doi.org/10.1016/j.measurement.2021.109094 Search in Google Scholar

Xu, Z., Li, C., Yang, Y. (2021). Fault diagnosis of rolling bearings using an improved multi-scale convolutional neural network with feature attention mechanism. ISA Transactions, 110, 379–393. https://doi.org/10.1016/j.isatra.2020.10.054 XuZ. LiC. YangY. 2021 Fault diagnosis of rolling bearings using an improved multi-scale convolutional neural network with feature attention mechanism ISA Transactions 110 379 393 https://doi.org/10.1016/j.isatra.2020.10.054 Search in Google Scholar

Zhang, W., Yang, J., Bo, X., Yang, Z. (2024). A dual attention mechanism network with self-attention and frequency channel attention for intelligent diagnosis of multiple rolling bearing fault types. Measurement Science and Technology, 35 (3), 036112. https://doi.org/10.1088/1361-6501/ad1811 ZhangW. YangJ. BoX. YangZ. 2024 A dual attention mechanism network with self-attention and frequency channel attention for intelligent diagnosis of multiple rolling bearing fault types Measurement Science and Technology 35 3 036112 https://doi.org/10.1088/1361-6501/ad1811 Search in Google Scholar

Yang, A., Xie, B., Liu, Y., Wang, L., Li, J. (2024). A network security situation prediction for consumer data in the internet of things using variational mode decomposition (VMD) and fused CNN-BiLSTM-attention. IEEE Transactions on Consumer Electronics, 70 (1), 1122–1133. https://doi.org/10.1109/TCE.2023.3323546 YangA. XieB. LiuY. WangL. LiJ. 2024 A network security situation prediction for consumer data in the internet of things using variational mode decomposition (VMD) and fused CNN-BiLSTM-attention IEEE Transactions on Consumer Electronics 70 1 1122 1133 https://doi.org/10.1109/TCE.2023.3323546 Search in Google Scholar

Ding, M., Shi, Z., Du, B., Wang, H., Han, L. (2021). A signal de-noising method for a MEMS gyroscope based on improved VMD-WTD. Measurement Science and Technology, 32 (9), 095112. https://doi.org/10.1088/1361-6501/abfe33 DingM. ShiZ. DuB. WangH. HanL. 2021 A signal de-noising method for a MEMS gyroscope based on improved VMD-WTD Measurement Science and Technology 32 9 095112 https://doi.org/10.1088/1361-6501/abfe33 Search in Google Scholar

Zhang, Z., Liu, B., Liu, Y., Zhang, H. (2022). Fault feature-extraction method of aviation bearing based on maximum correlation Renyi entropy and phase-space reconstruction technology. Entropy, 24 (10), 1459. https://doi.org/10.3390/e24101459 ZhangZ. LiuB. LiuY. ZhangH. 2022 Fault feature-extraction method of aviation bearing based on maximum correlation Renyi entropy and phase-space reconstruction technology Entropy 24 10 1459 https://doi.org/10.3390/e24101459 Search in Google Scholar

Xue, J., Shen, B. (2023). Dung beetle optimizer: A new meta-heuristic algorithm for global optimization. The Journal of Supercomputing, 79, 7305–7336. https://doi.org/10.1007/s11227-022-04959-6 XueJ. ShenB. 2023 Dung beetle optimizer: A new meta-heuristic algorithm for global optimization The Journal of Supercomputing 79 7305 7336 https://doi.org/10.1007/s11227-022-04959-6 Search in Google Scholar

Gholami, R., Hodtani, G. A. (2020). A more general information theoretic study of wireless location verification system. IEEE Transactions on Vehicular Technology, 69 (9), 9938–9950. https://doi.org/10.1109/TVT.2020.3003806 GholamiR. HodtaniG. A. 2020 A more general information theoretic study of wireless location verification system IEEE Transactions on Vehicular Technology 69 9 9938 9950 https://doi.org/10.1109/TVT.2020.3003806 Search in Google Scholar

Li, Y., Zhang, H., Ma, S., Cheng, G., Yao, Q., Zuo, C. (2024). A novel method based on stepwise variational modal decomposition and gramian angular difference field for bearing health monitoring. Arabian Journal for Science and Engineering, 49 (11), 15773–15786. https://doi.org/10.1007/s13369-024-09320-y LiY. ZhangH. MaS. ChengG. YaoQ. ZuoC. 2024 A novel method based on stepwise variational modal decomposition and gramian angular difference field for bearing health monitoring Arabian Journal for Science and Engineering 49 11 15773 15786 https://doi.org/10.1007/s13369-024-09320-y Search in Google Scholar

Qi, L., Zhang, Q., Xie, Y., Zhang, J., Ke, J. (2024). Research on wind turbine fault detection based on CNN-LSTM. Energies, 17 (17), 4497. https://doi.org/10.3390/en17174497 QiL. ZhangQ. XieY. ZhangJ. KeJ. 2024 Research on wind turbine fault detection based on CNN-LSTM Energies 17 17 4497 https://doi.org/10.3390/en17174497 Search in Google Scholar

Qu, D., Wang, S., Liu, H., Meng, Y. (2022). A car-following model based on trajectory data for connected and automated vehicles to predict trajectory of human-driven vehicles. Sustainability, 14 (12), 7045. https://doi.org/10.3390/su14127045 QuD. WangS. LiuH. MengY. 2022 A car-following model based on trajectory data for connected and automated vehicles to predict trajectory of human-driven vehicles Sustainability 14 12 7045 https://doi.org/10.3390/su14127045 Search in Google Scholar

Case Western Reserve University. Bearing Data Center. Case Western Reserve University Bearing Data Center Search in Google Scholar

Muthulakshmi, V., Shajin, F. H., Rose, J. D., Rajesh, P. (2024). Generative adversarial networks classifier optimized with water strider algorithm for fake tweets detection. IETE Journal of Research, 70 (2), 1556–1571. https://doi.org/10.1080/03772063.2023.2172466 MuthulakshmiV. ShajinF. H. RoseJ. D. RajeshP. 2024 Generative adversarial networks classifier optimized with water strider algorithm for fake tweets detection IETE Journal of Research 70 2 1556 1571 https://doi.org/10.1080/03772063.2023.2172466 Search in Google Scholar

Wang, X., Liu, W. Y., Zhang, Y., Gu, H. (2020). A novel wind turbine fault diagnosis method based on generator current analysis. Journal of Vibroengineering, 22 (8). https://doi.org/10.21595/jve.2020.21336 WangX. LiuW. Y. ZhangY. GuH. 2020 A novel wind turbine fault diagnosis method based on generator current analysis Journal of Vibroengineering 22 8 https://doi.org/10.21595/jve.2020.21336 Search in Google Scholar

Yao, Z., Zhang, T., Wang, Q., Zhao, Y. (2022). Short-term power load forecasting of integrated energy system based on attention-CNN-DBILSTM. Mathematical Problems in Engineering. https://doi.org/10.1155/2022/1075698 YaoZ. ZhangT. WangQ. ZhaoY. 2022 Short-term power load forecasting of integrated energy system based on attention-CNN-DBILSTM Mathematical Problems in Engineering https://doi.org/10.1155/2022/1075698 Search in Google Scholar

Lingua:
Inglese
Frequenza di pubblicazione:
6 volte all'anno
Argomenti della rivista:
Ingegneria, Elettrotecnica, Ingegneria dell'automazione, metrologia e collaudo