A Bearing Fault Diagnosis Model based on Minimum Average Composite Entropy and Parallel Attention Mechanism Convolutional Neural Network
14 ago 2025
INFORMAZIONI SU QUESTO ARTICOLO
Pubblicato online: 14 ago 2025
Pagine: 178 - 189
Ricevuto: 28 feb 2025
Accettato: 27 mag 2025
DOI: https://doi.org/10.2478/msr-2025-0022
Parole chiave
© 2025 Zhen Zhang, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial 4.0 International License.
Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

Fig. 9.

Fig. 10.

Fig. 11.

Fig. 12.

Fig. 13.

Fig. 14.

Fig. 15.

Fig. 16.

Fig. 17.

Fig. 18.

Dataset classification_
Fault location | Failure diameter [mm] | Tag | Dataset |
|
---|---|---|---|---|
Training set | Test set | |||
Regular | —— | 1 | 70 | 30 |
Inner ring | —— | 2 | 70 | 30 |
Outer ring | 90° | 3A | 70 | 30 |
135° | 3B | 70 | 30 | |
Regular | —— | 4 | 70 | 30 |
Compound failure | outer 90° | 5A | 70 | 30 |
outer 135° | 5B | 70 | 30 |
Experimental results of 5 dB complex noise comparison_
Model | MACE + PFACNN | RVMD+ DCNN | RVMD+ CNN | E+CNN BiGRU | E+CNN SVM |
---|---|---|---|---|---|
Accuracy [%] | 91.3 | 80.1 | 52.1 | 54.2 | 48.3 |
Recall rate [%] | 91.6 | 80.5 | 52.7 | 54.9 | 48.8 |
F1 [%] | 91.4 | 80.3 | 52.5 | 54.6 | 48.6 |
Results of ablation experiment_
Module |
Model | Accuracy [%] | ||
---|---|---|---|---|
1 | 2 | 3 | ||
× | × | √ | A | 91.2 |
× | √ | √ | B | 93.7 |
√ | × | √ | C | 97.4 |
√ | √ | × | D | 95.3 |
√ | √ | √ | E | 98.9 |
Experimental parameters_
Inner diameter [mm] | Pitch diameter [mm] | Thickness [mm] | Outer diameter [mm] | Rolling diameter [mm] | Contact angle [°] |
---|---|---|---|---|---|
25 | 39 | 15 | 52 | 8 | 0 |
Fault diagnosis results_
Category | Accuracy [%] | Category | Accuracy [%] |
---|---|---|---|
1 | 100 | 6 | 100 |
2 | 100 | 7 | 100 |
3 | 100 | 8 | 99.3 |
4 | 100 | 9 | 99.3 |
5 | 100 | 10 | 100 |
Results of 0 dB white noise comparison test_
Model | MACE + PFACNN | IF+ CNN | M+ CNN | E+CNN | E+ CNNSVM |
---|---|---|---|---|---|
Accuracy [%] | 89.2 | 64.5 | 51.6 | 67.8 | 72.4 |
Recall rate [%] | 89.8 | 64.9 | 52.1 | 68.2 | 72.9 |
F1 [%] | 89.7 | 64.6 | 51.8 | 67.7 | 72.6 |
Generalization experiment results – Accuracy [%]_
Model | MACE + PFACNN | E+CNN | E+SVM | IF+CNN | M+ DCNN |
---|---|---|---|---|---|
|
|
|
|
|
|
3A-3B | 97.98 | 91.14 | 91.12 | 89.99 | 90.11 |
3B-3A | 93.64 | 92.13 | 88.96 | 90.96 | 89.11 |
5A-5B | 93.87 | 90.11 | 89.13 | 86.57 | 90.40 |
5B-5A | 92.01 | 89.41 | 90.11 | 88.76 | 89.13 |
Mean | 94.37 | 90.69 | 89.83 | 89.07 | 89.68 |