Accesso libero

Tribosynthesis of friction films and their influence on the functional properties of copper-based antifriction composites for printing machines

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Neale MJ. The tribology handbook. 2nd ed. Elsevier Ltd. All rights reserved, editor. Oxford: Butterworth-Heinemann; 1996. https://doi.org/10.1016/B978-0-7506-1198-5.X5000-0. NealeMJ The tribology handbook 2nd ed. Elsevier Ltd. All rights reserved, editor. Oxford Butterworth-Heinemann 1996 https://doi.org/10.1016/B978-0-7506-1198-5.X5000-0. Search in Google Scholar

Simmons CH, Maguire DE, Phelps N. 35 - Bearings and applied technology. In: Simmons CH, Maguire DE, Phelps NBTM of ED. 5th ed. Oxford: Butterworth-Heinemann; 2020. p. 519–45. https://doi.org/10.1016/B978-0-12-818482-0.00035-9. SimmonsCH MaguireDE PhelpsN 35 - Bearings and applied technology In: Simmons CH, Maguire DE, Phelps NBTM of ED 5th ed. Oxford Butterworth-Heinemann 2020 519 45 https://doi.org/10.1016/B978-0-12-818482-0.00035-9. Search in Google Scholar

Guangrong H XT. Copper-based alloy sliding-bearing material and preparation method thereof. Patent. China; CN103602849A, 2016. https://patents.google.com/patent/CN103602849A/en. GuangrongH XT Copper-based alloy sliding-bearing material and preparation method thereof Patent. China; CN103602849A, 2016 https://patents.google.com/patent/CN103602849A/en. Search in Google Scholar

Samal P, Newkirk J. Powder Metallurgy. ASM International; 2015. https://doi.org/10.31399/asm.hb.v07.9781627081757. SamalP NewkirkJ Powder Metallurgy ASM International 2015 https://doi.org/10.31399/asm.hb.v07.9781627081757. Search in Google Scholar

Liu Q, Castillo-Rodríguez M, Galisteo AJ, Guzmán de Villoria R, Torralba JM. Wear behavior of copper–graphite composites processed by field-assisted hot pressing. J Compos Sci. 2019; 3(1): 29. https://doi.org/10.3390/jcs3010029. LiuQ Castillo-RodríguezM GalisteoAJ Guzmán de VilloriaR TorralbaJM Wear behavior of copper–graphite composites processed by field-assisted hot pressing J Compos Sci. 2019 3 1 29 https://doi.org/10.3390/jcs3010029. Search in Google Scholar

Wu G, Xu C, Xiao G, Yi M. Recent progress in self-lubricating ceramic composites. In: Menezes PL, Rohatgi PK, Omrani E, (eds.) Self-lubricating composites. Berlin, Heidelberg: Springer Berlin Heidelberg; 2018. p. 133–54. https://doi.org/10.1007/978-3-662-56528-5_5. WuG XuC XiaoG YiM Recent progress in self-lubricating ceramic composites In: MenezesPL RohatgiPK OmraniE (eds.) Self-lubricating composites Berlin, Heidelberg Springer Berlin Heidelberg 2018 133 54 https://doi.org/10.1007/978-3-662-56528-5_5. Search in Google Scholar

Li R, Yin Y, Zhang K, Song R, Chen Q. Effects of ball milling and load on transfer film formation of copper-based composites. Ind Lubr Tribol. 2022;74(9):1056–62. https://doi.org/10.1108/ILT-04-2022-0119. LiR YinY ZhangK SongR ChenQ Effects of ball milling and load on transfer film formation of copper-based composites Ind Lubr Tribol. 2022 74 9 1056 62 https://doi.org/10.1108/ILT-04-2022-0119. Search in Google Scholar

Hoganas Handbook for Sintered Components: Material and Powder Properties. 1997. https://books.google.pl/books?id=wl9OtAEACAAJ. Hoganas Handbook for Sintered Components: Material and Powder Properties 1997 https://books.google.pl/books?id=wl9OtAEACAAJ. Search in Google Scholar

Stojadinović S, Tadić N, Vasilić R. Plasma electrolytic oxidation of hafnium. Int J Refract Met H. 2017;69:153–7. https://doi.org/10.1016/j.ijrmhm.2017.08.011. StojadinovićS TadićN VasilićR Plasma electrolytic oxidation of hafnium Int J Refract Met H. 2017 69 153 7 https://doi.org/10.1016/j.ijrmhm.2017.08.011. Search in Google Scholar

Konopka K, Roik TA, Gavrish AP, Vitsuk YY, Mazan T. Effect of CaF2 surface layers on the friction behavior of copper-based composite. Powder Metall Met Ceram. 2012;51(5):363–7. https://doi.org/10.1007/s11106-012-9441-2. KonopkaK RoikTA GavrishAP VitsukYY MazanT Effect of CaF2 surface layers on the friction behavior of copper-based composite Powder Metall Met Ceram 2012 51 5 363 7 https://doi.org/10.1007/s11106-012-9441-2. Search in Google Scholar

Roik TA, Gavrish AP, Kirichok PA, Vitsyuk YY. Effect of secondary structures on the functional properties of high-speed sintered bearings for printing machines. Powder Metall Met Ceram. 2015;54(1):119–27. https://doi.org/10.1007/s11106-015-9688-5. RoikTA GavrishAP KirichokPA VitsyukYY Effect of secondary structures on the functional properties of high-speed sintered bearings for printing machines Powder Metall Met Ceram 2015 54 1 119 27 https://doi.org/10.1007/s11106-015-9688-5. Search in Google Scholar

Kurzawa A, Roik T, Gavrysh O, Vitsiuk I, Bocian M, Pyka D, Zajac P, Jamroziak K. Friction mechanism features of the nickel-based composite antifriction materials at high temperatures. Coatings. 2020; 10(5): 454. https://doi.org/10.3390/coatings10050454. KurzawaA RoikT GavryshO VitsiukI BocianM PykaD ZajacP JamroziakK Friction mechanism features of the nickel-based composite antifriction materials at high temperatures Coatings 2020 10 5 454 https://doi.org/10.3390/coatings10050454. Search in Google Scholar

Mohan S, Anand A, Arvind Singh R, Jayalakshmi S, Chen X, Konovalov S. Friction and wear study of Fe-Cu-C-CaF2 self-lubricating composite at high speed and high temperature. IOP Conf Ser: Mater Sci Eng. 2020;834(1):12010. https://dx.doi.org/10.1088/1757-899X/834/1/012010. MohanS AnandA Arvind SinghR JayalakshmiS ChenX KonovalovS Friction and wear study of Fe-Cu-C-CaF2 self-lubricating composite at high speed and high temperature IOP Conf Ser: Mater Sci Eng. 2020 834 1 12010 https://dx.doi.org/10.1088/1757-899X/834/1/012010. Search in Google Scholar

Roik TA, Gavrish OA, Vitsiuk II. The phase composition and structure of the antifriction copper-based composite and their influence on tribological properties. Powder Metall Met Ceram. 2021;60(3):191–7. https://doi.org/10.1007/s11106-021-00227-z. RoikTA GavrishOA VitsiukII The phase composition and structure of the antifriction copper-based composite and their influence on tribological properties Powder Metall Met Ceram 2021 60 3 191 7 https://doi.org/10.1007/s11106-021-00227-z. Search in Google Scholar

Jamroziak K, Roik T, Gavrish O, Vitsiuk I, Lesiuk G, Correia JAFO, De Jesus A. Improved manufacturing performance of a new antifriction composite parts based on copper. Eng Fail Anal. 2018;91: 225–233. https://doi.org/10.1016/j.engfailanal.2018.04.034. JamroziakK RoikT GavrishO VitsiukI LesiukG CorreiaJAFO De JesusA Improved manufacturing performance of a new antifriction composite parts based on copper Eng Fail Anal 2018 91 225 233 https://doi.org/10.1016/j.engfailanal.2018.04.034. Search in Google Scholar

Roik TA, Gavrysh OA, Vitsiuk II, Khmiliarchuk OI. New copper-based composites for heavy-loaded friction units. Powder Metall Met Ceram. 2018;56(9):516–22. https://doi.org/10.1007/s11106-018-9924-x. RoikTA GavryshOA VitsiukII KhmiliarchukOI New copper-based composites for heavy-loaded friction units Powder Metall Met Ceram 2018 56 9 516 22 https://doi.org/10.1007/s11106-018-9924-x. Search in Google Scholar

Roik T, Jamroziak K, Lesiuk G, Gavrish OA, Vitsiuk J. Copper based anti-friction composite material. Patent. Poland: PL237229, 2019. https://api-ewyszukiwarka.pue.uprp.gov.pl/api/collection/7b74f34630c6a414f465b09b7beb407a. RoikT JamroziakK LesiukG GavrishOA VitsiukJ Copper based anti-friction composite material Patent. Poland: PL237229, 2019 https://api-ewyszukiwarka.pue.uprp.gov.pl/api/collection/7b74f34630c6a414f465b09b7beb407a. Search in Google Scholar

Roik TA, Gavrysh OA, Vitsiuk II. Antifriction composite material based on copper. Patent. Ukraine: UA135076 IPC, 2019. RoikTA GavryshOA VitsiukII Antifriction composite material based on copper Patent. Ukraine: UA135076 IPC, 2019 Search in Google Scholar

John M, Menezes PL. Self-lubricating materials for extreme condition applications. Materials. 2021; 14(19): 5588. https://doi.org/10.3390/ma14195588. JohnM MenezesPL Self-lubricating materials for extreme condition applications Materials 2021 14 19 5588 https://doi.org/10.3390/ma14195588. Search in Google Scholar

Ouyang JH, Li YF, Zhang YZ, Wang YM, Wang YJ. High-temperature solid lubricants and self-lubricating composites: A critical review. Lubricants. 2022;10(8):177. https://doi.org/10.3390/lubricants10080177. OuyangJH LiYF ZhangYZ WangYM WangYJ High-temperature solid lubricants and self-lubricating composites: A critical review Lubricants 2022 10 8 177 https://doi.org/10.3390/lubricants10080177. Search in Google Scholar

Kyrychok PO, Roik TA, Gavrish AP, Shevchuk AV VY. New composite materials for friction parts of printing machines. Kyiv: NTUU KPI, Ukraine; 2015. KyrychokPO RoikTA GavrishAP ShevchukAV VY New composite materials for friction parts of printing machines Kyiv NTUU KPI, Ukraine 2015 Search in Google Scholar

Bhushan B. Introduction to tribology. 2nd Editio. John Wiley & Sons, Ltd; 2013. https://onlinelibrary.wiley.com/doi/book/10.1002/9781118403259. BhushanB Introduction to tribology 2nd Editio John Wiley & Sons, Ltd 2013 https://onlinelibrary.wiley.com/doi/book/10.1002/9781118403259. Search in Google Scholar

Migranov MS, Mukhamadeev VR, Migranov AM, Mukhamadeev IR, Khazgalieva AA. The improvement of the tribotechnical properties of materials and coatings for metal cutting tool. IOP Conf Ser Mater Sci Eng. 2018;447(1):12083. https://dx.doi.org/10.1088/1757-899X/447/1/012083. MigranovMS MukhamadeevVR MigranovAM MukhamadeevIR KhazgalievaAA The improvement of the tribotechnical properties of materials and coatings for metal cutting tool IOP Conf Ser Mater Sci Eng 2018 447 1 12083 https://dx.doi.org/10.1088/1757-899X/447/1/012083. Search in Google Scholar

Purushotham G, Hemanth J. Action of chills on microstructure, mechanical properties of chilled ASTM A 494M grade nickel alloyreinforced with fused SiO2 metal matrix composite. Proc Mat Sci. 2014;5:426–33. https://doi.org/10.1016/j.mspro.2014.07.285. PurushothamG HemanthJ Action of chills on microstructure, mechanical properties of chilled ASTM A 494M grade nickel alloyreinforced with fused SiO2 metal matrix composite Proc Mat Sci 2014 5 426 33 https://doi.org/10.1016/j.mspro.2014.07.285. Search in Google Scholar

Olaleye K, Roik T, Kurzawa A, Gavrysh O, Vitsiuk I, Jamroziak K. Structure formation in antifriction composites with a nickel matrix and its effect on properties. Materials. 2022;15(9):3404. https://doi.org/10.3390/ma15093404. OlaleyeK RoikT KurzawaA GavryshO VitsiukI JamroziakK Structure formation in antifriction composites with a nickel matrix and its effect on properties Materials 2022 15 9 3404 https://doi.org/10.3390/ma15093404. Search in Google Scholar

Avram V, Csaki I, Mates I, Stoica NA, Stoica AM, Semenescu A. The effect of Ca and Mg on the microstructure and tribological properties of YPbSn10 antifriction alloy. Materials. 2022;15(9):3289. https://www.mdpi.com/1996-1944/15/9/3289. AvramV CsakiI MatesI StoicaNA StoicaAM SemenescuA The effect of Ca and Mg on the microstructure and tribological properties of YPbSn10 antifriction alloy Materials 2022 15 9 3289 https://www.mdpi.com/1996-1944/15/9/3289. Search in Google Scholar

Su L, Gao F, Han X, Chen J. Effect of copper powder third body on tribological property of copper-based friction materials. Tribol Int. 2015;90:420–5. https://doi.org/10.1016/j.triboint.2015.05.003. SuL GaoF HanX ChenJ Effect of copper powder third body on tribological property of copper-based friction materials Tribol Int 2015 90 420 5 https://doi.org/10.1016/j.triboint.2015.05.003. Search in Google Scholar

Rodrigues ACP, Yonamine T, Albertin E, Sinatora A, Azevedo CRF. Effect of Cu particles as an interfacial media addition on the friction coefficient and interface microstructure during (steel/steel) pin on disc tribotest. Wear. 2015;330–331:70–8. https://doi.org/10.1016/j.wear.2015.02.006. RodriguesACP YonamineT AlbertinE SinatoraA AzevedoCRF Effect of Cu particles as an interfacial media addition on the friction coefficient and interface microstructure during (steel/steel) pin on disc tribotest Wear 2015 330–331 70 8 https://doi.org/10.1016/j.wear.2015.02.006. Search in Google Scholar

Berge P, Pomeau Y, Vidal C, Ruelle D, Tuckerman LS. Order within chaos: Towards a deterministic approach to turbulence. New York, Paris SE: Wiley; Hermann; 1984. BergeP PomeauY VidalC RuelleD TuckermanLS Order within chaos: Towards a deterministic approach to turbulence New York, Paris SE Wiley; Hermann 1984 Search in Google Scholar

Bowden FP. Introduction to the discussion: the mechanism of friction. Proc R Soc Lon A. 1952;212:440–9. http://doi.org/10.1098/rspa.1952.0093. BowdenFP Introduction to the discussion: the mechanism of friction Proc R Soc Lon A 1952 212 440 9 http://doi.org/10.1098/rspa.1952.0093. Search in Google Scholar

Wang Z. A universal bifurcation mechanism arising from progressive hydroelastic waves. Theor Appl Mech Lett. 2022;12(1):100315. https://doi.org/10.1016/j.taml.2021.100315. WangZ A universal bifurcation mechanism arising from progressive hydroelastic waves Theor Appl Mech Lett 2022 12 1 100315 https://doi.org/10.1016/j.taml.2021.100315. Search in Google Scholar

eISSN:
2083-134X
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Materials Sciences, other, Nanomaterials, Functional and Smart Materials, Materials Characterization and Properties