Accesso libero

Investigation of aerosol droplets diameter generated in aerosol jet printing

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Kooij S, Astefanei A, Corthals GL, Bonn D. Size distributions of droplets produced by ultrasonic nebulizers. Sci Rep. 2019;9:6128. doi:10.1038/s41598-019-42599-8. KooijS AstefaneiA CorthalsGL BonnD Size distributions of droplets produced by ultrasonic nebulizers Sci Rep 2019 9 6128 10.1038/s41598-019-42599-8 Open DOISearch in Google Scholar

Mitchell J, Nagel M. Particle size analysis from medicinal inhalers. KONA Powder Part J. 2004;22: 32–5. doi:10.14356/kona.2004010. MitchellJ NagelM Particle size analysis from medicinal inhalers KONA Powder Part J 2004 22 32 5 10.14356/kona.2004010 Open DOISearch in Google Scholar

Aghajani S, Accardo A, Tichem M. Process and nozzle design for high-resolution dry aerosol direct writing (dADW) of sub-100 nm nanoparticles. Addit Manuf. 2022;54: 102729. doi:10.1016/j.addma.2022.102729. AghajaniS AccardoA TichemM Process and nozzle design for high-resolution dry aerosol direct writing (dADW) of sub-100 nm nanoparticles Addit Manuf 2022 54 102729 10.1016/j.addma.2022.102729 Open DOISearch in Google Scholar

Gou Y, Jia Y, Wang P, Sun C. Progress of inertial microfluidics in principle and application. Sensors (Basel). 2018;18: 1762. doi:10.3390/s18061762. GouY JiaY WangP SunC Progress of inertial microfluidics in principle and application Sensors (Basel) 2018 18 1762 10.3390/s18061762 Open DOISearch in Google Scholar

Di Carlo D. Inertial microfluidics. Lab Chip. 2009;9: 3038–46. doi:10.1039/b912547g. Di CarloD Inertial microfluidics Lab Chip 2009 9 3038 46 10.1039/b912547g Open DOISearch in Google Scholar

Chen G, Gu Y, Tsang H, Hines DR, Das S. The effect of droplet sizes on overspray in aerosol-jet printing. Adv Eng Mater. 2018;20, 1701084. doi:10.1002/adem.201701084. ChenG GuY TsangH HinesDR DasS The effect of droplet sizes on overspray in aerosol-jet printing Adv Eng Mater 2018 20 1701084 10.1002/adem.201701084 Open DOISearch in Google Scholar

Saffman PG. The lift on a small sphere in a slow shear flow. J Fluid Mech. 1965;22: 385–400. SaffmanPG The lift on a small sphere in a slow shear flow J Fluid Mech 1965 22 385 400 Search in Google Scholar

Rühle F, Schaaf C, Stark H. Optimal control of colloidal trajectories in inertial microfluidics using the Saffman effect. Micromachines (Basel). 2020;11: 592. doi:10.3390/MI11060592. RühleF SchaafC StarkH Optimal control of colloidal trajectories in inertial microfluidics using the Saffman effect Micromachines (Basel). 2020 11 592 10.3390/MI11060592 Open DOISearch in Google Scholar

Akhatov IS, Hoey JM, Swenson OF, Schulz DL. Aerosol focusing in micro-capillaries: theory and experiment. J Aerosol Sci. 2008;39: 691–9. doi:10.1016/j.jaerosci.2008.04.004. AkhatovIS HoeyJM SwensonOF SchulzDL Aerosol focusing in micro-capillaries: theory and experiment J Aerosol Sci 2008 39 691 9 10.1016/j.jaerosci.2008.04.004 Open DOISearch in Google Scholar

Tafoya RR, Secor EB. Understanding effects of print-head geometry in aerosol jet printing. 2020, 5, 035004 TafoyaRR SecorEB Understanding effects of print-head geometry in aerosol jet printing 2020 5 035004 Search in Google Scholar

Hoey JM, Lutfurakhmanov A, Schulz DL, Akhatov IS. A review on aerosol-based direct-write and its applications for microelectronics. J Nanotechnol. 2012, 324380. doi:10.1155/2012/324380. HoeyJM LutfurakhmanovA SchulzDL AkhatovIS A review on aerosol-based direct-write and its applications for microelectronics J Nanotechnol 2012 324380. 10.1155/2012/324380 Open DOISearch in Google Scholar

Secor EB. Principles of aerosol jet printing. Flex Print Electron. 2018;3. 03502 doi:10.1088/2058-8585/aace28. SecorEB Principles of aerosol jet printing Flex Print Electron 2018 3 03502 10.1088/2058-8585/aace28 Open DOISearch in Google Scholar

Rajan R, Pandit AB. Correlations to predict droplet size in ultrasonic atomisation. Ultrasonics. 2001;39(4): 235–55. doi:10.1016/s0041-624x(01)00054-3. RajanR PanditAB Correlations to predict droplet size in ultrasonic atomisation Ultrasonics 2001 39 4 235 55 10.1016/s0041-624x(01)00054-3 Open DOISearch in Google Scholar

Lang RJ. Ultrasonic atomization of liquids. J Acoust Soc Am. 1962;34,6–8 LangRJ Ultrasonic atomization of liquids J Acoust Soc Am 1962 34 6 8 Search in Google Scholar

Lozano A, García JA, Alconchel J, Barreras F, Calvo E, Santolaya JL. Influence of liquid properties on ultrasonic atomization. ILASS–Europe 2017, 28th Conference on Liquid Atomization and Spray Systems, 6–8 September 2017, Valencia, Spain; doi:10.4995/ilass2017.2017.4588. LozanoA GarcíaJA AlconchelJ BarrerasF CalvoE SantolayaJL Influence of liquid properties on ultrasonic atomization ILASS–Europe 2017, 28th Conference on Liquid Atomization and Spray Systems 6–8 September 2017 Valencia, Spain 10.4995/ilass2017.2017.4588 Open DOISearch in Google Scholar

Barreras F, Amaveda H, Lozano A. Transient high-frequency ultrasonic water atomization. Exp Fluids. 2002;33: 405–13. doi:10.1007/s00348-002-0456-1. BarrerasF AmavedaH LozanoA Transient high-frequency ultrasonic water atomization Exp Fluids 2002 33 405 13 10.1007/s00348-002-0456-1 Open DOISearch in Google Scholar

Villermaux E. Fragmentation. Annu Rev Fluid Mech. 2007;39: 419–46. doi:10.1146/annurev.fluid.39.050905.110214. VillermauxE Fragmentation Annu Rev Fluid Mech 2007 39 419 46 10.1146/annurev.fluid.39.050905.110214 Open DOISearch in Google Scholar

Shardt N, Wang Y, Jin Z, Elliott JAW. Surface tension as a function of temperature and composition for a broad range of mixtures. Chem Eng Sci. 2021;230: 116095. doi:10.1016/j.ces.2020.116095. ShardtN WangY JinZ ElliottJAW Surface tension as a function of temperature and composition for a broad range of mixtures Chem Eng Sci 2021 230 116095 10.1016/j.ces.2020.116095 Open DOISearch in Google Scholar

Petravic J, Delhommelle J. Hydrogen bonding in ethanol under shear. J Chem Phys. 2005;122: 234509. doi:10.1063/1.1940050. PetravicJ DelhommelleJ Hydrogen bonding in ethanol under shear J Chem Phys 2005 122 234509 10.1063/1.1940050 Open DOISearch in Google Scholar

Gañán-Calvo AM. Generation of steady liquid microthreads and micron-sized monodisperse sprays in gas streams. 1998, 80, 2–12 doi: 10.1103/Phys-RevLett.80.285 Gañán-CalvoAM Generation of steady liquid microthreads and micron-sized monodisperse sprays in gas streams 1998 80 2 12 10.1103/Phys-RevLett.80.285 Open DOISearch in Google Scholar

Ohnesorge WV. Die Bildung von Tropfen an Düsen und die Auflösung flüssiger Strahlen. Zeitschrift Für Angewandte Mathematik Und Mechanik. 1936;16: 355–8. doi:10.1002/zamm.19360160611. OhnesorgeWV Die Bildung von Tropfen an Düsen und die Auflösung flüssiger Strahlen Zeitschrift Für Angewandte Mathematik Und Mechanik 1936 16 355 8 10.1002/zamm.19360160611 Open DOISearch in Google Scholar

Yakimets I, MacKerron D, Giesen P, Kilmartin KJ, Goorhuis M, Meinders E, et al. Polymer substrates for flexible electronics: achievements and challenges. Adv Mat Res. 2010;93–94: 5–8. doi:10.4028/www.scientific.net/AMR.93-94.5. YakimetsI MacKerronD GiesenP KilmartinKJ GoorhuisM MeindersE Polymer substrates for flexible electronics: achievements and challenges Adv Mat Res 2010 93–94 5 8 10.4028/www.scientific.net/AMR.93-94.5 Open DOISearch in Google Scholar

Zhang Y, Hu G, Liu Y, Wang J, Yang G, Li D. Suppression and utilization of satellite droplets for inkjet printing: a review. Processes. 2022;10: 932. doi:10.3390/pr10050932. ZhangY HuG LiuY WangJ YangG LiD Suppression and utilization of satellite droplets for inkjet printing: a review Processes 2022 10 932 10.3390/pr10050932 Open DOISearch in Google Scholar

Ioannou N, Liu H, Zhang YH. Droplet dynamics in confinement. J Comput Sci. 2016;17: 463–74. doi:10.1016/j.jocs.2016.03.009. IoannouN LiuH ZhangYH Droplet dynamics in confinement J Comput Sci 2016 17 463 74 10.1016/j.jocs.2016.03.009 Open DOISearch in Google Scholar

Taylor GI. The formation of emulsions in definable fields of flow. Proceedings of the Royal Society of London Series A, Containing Papers of a Mathematical and Physical Character. 1934;146: 501–23. doi:10.1098/rspa.1934.0169. TaylorGI The formation of emulsions in definable fields of flow Proceedings of the Royal Society of London Series A, Containing Papers of a Mathematical and Physical Character 1934 146 501 23 10.1098/rspa.1934.0169 Open DOISearch in Google Scholar

Sibillo V, Pasquariello G, Simeone M, Cristini V, Guido S. Drop deformation in microconfined shear flow. Phys Rev Lett. 2006;97: 054502. doi:10.1103/PhysRevLett.97.054502. SibilloV PasquarielloG SimeoneM CristiniV GuidoS Drop deformation in microconfined shear flow Phys Rev Lett 2006 97 054502 10.1103/PhysRevLett.97.054502 Open DOISearch in Google Scholar

Yokoi K. Numerical studies of droplet splashing on a dry surface: triggering a splash with the dynamic contact angle. Soft Matter. 2011;7: 5120–3. doi:10.1039/c1sm05336a. YokoiK Numerical studies of droplet splashing on a dry surface: triggering a splash with the dynamic contact angle Soft Matter 2011 7 5120 3 10.1039/c1sm05336a Open DOISearch in Google Scholar

Motzkus C, Gensdarmes F, Géhin E. Parameter study of microdroplet formation by impact of millimetre-size droplets onto a liquid film. J Aerosol Sci. 2009;40: 680–92. doi:10.1016/j.jaerosci.2009.04.001. MotzkusC GensdarmesF GéhinE Parameter study of microdroplet formation by impact of millimetre-size droplets onto a liquid film J Aerosol Sci 2009 40 680 92 10.1016/j.jaerosci.2009.04.001 Open DOISearch in Google Scholar

Yonemoto Y, Tashiro K, Shimizu K, Kunugi T. Predicting the splash of a droplet impinging on solid substrates. Sci Rep. 2022;12,5093. doi:10.1038/s41598-022-08852-3. YonemotoY TashiroK ShimizuK KunugiT Predicting the splash of a droplet impinging on solid substrates Sci Rep 2022 12 5093 10.1038/s41598-022-08852-3 Open DOISearch in Google Scholar

Motzkus C, Gensdarmes F, Géhin E. Study of the coalescence/splash threshold of droplet impact on liquid films and its relevance in assessing airborne particle release. J Colloid Interface Sci. 2011;362: 540–52. doi:10.1016/j.jcis.2011.06.031. MotzkusC GensdarmesF GéhinE Study of the coalescence/splash threshold of droplet impact on liquid films and its relevance in assessing airborne particle release J Colloid Interface Sci 2011 362 540 52 10.1016/j.jcis.2011.06.031 Open DOISearch in Google Scholar

Stow CD, Hadfield MG. An experimental investigation of fluid flow resulting from the impact of a water drop with an unyielding dry surface. 1981;373, 1755, 419–441 doi: 10.1098/rspa.1981.0002. StowCD HadfieldMG An experimental investigation of fluid flow resulting from the impact of a water drop with an unyielding dry surface 1981 373 1755 419 441 10.1098/rspa.1981.0002 Open DOISearch in Google Scholar

Almohammadi H, Amirfazli A. Droplet impact: viscosity and wettability effects on splashing. J Colloid Interface Sci. 2019;553: 22–30. doi:10.1016/j.jcis.2019.05.101. AlmohammadiH AmirfazliA Droplet impact: viscosity and wettability effects on splashing J Colloid Interface Sci 2019 553 22 30 10.1016/j.jcis.2019.05.101 Open DOISearch in Google Scholar

Latka A, Strandburg-Peshkin A, Driscoll MM, Stevens CS, Nagel SR. Creation of prompt and thin-sheet splashing by varying surface roughness or increasing air pressure. Phys Rev Lett. 2012;109: 054501. doi:10.1103/PhysRevLett.109.054501. LatkaA Strandburg-PeshkinA DriscollMM StevensCS NagelSR Creation of prompt and thin-sheet splashing by varying surface roughness or increasing air pressure Phys Rev Lett 2012 109 054501 10.1103/PhysRevLett.109.054501 Open DOISearch in Google Scholar

Ebrahim M, Ortega A. Identification of the impact regimes of a liquid droplet propelled by a gas stream impinging onto a dry surface at moderate to high weber number. Exp Therm Fluid Sci. 2017;80: 168–80. doi:10.1016/j.expthermflusci.2016.08.019. EbrahimM OrtegaA Identification of the impact regimes of a liquid droplet propelled by a gas stream impinging onto a dry surface at moderate to high weber number Exp Therm Fluid Sci 2017 80 168 80 10.1016/j.expthermflusci.2016.08.019 Open DOISearch in Google Scholar

Mezhericher M, Levy A, Borde I. Modelling the morphological evolution of nanosuspension droplet in constant-rate drying stage. Chem Eng Sci. 2011;66: 884–96. doi:10.1016/j.ces.2010.11.028. MezhericherM LevyA BordeI Modelling the morphological evolution of nanosuspension droplet in constant-rate drying stage Chem Eng Sci 2011 66 884 96 10.1016/j.ces.2010.11.028 Open DOISearch in Google Scholar

Woźniak M, Derkachov G, Kolwas K, Archer J, Wojciechowski T, Jakubczyk D, et al. Formation of highly ordered spherical aggregates from drying microdroplets of colloidal suspension. Langmuir. 2015;31: 7860–8. doi:10.1021/acs.langmuir.5b01621. WoźniakM DerkachovG KolwasK ArcherJ WojciechowskiT JakubczykD Formation of highly ordered spherical aggregates from drying microdroplets of colloidal suspension Langmuir 2015 31 7860 8 10.1021/acs.langmuir.5b01621 Open DOISearch in Google Scholar

Deegan RD. Pattern formation in drying drops. Am Phys Soc. 2000;60: 475–85. DeeganRD Pattern formation in drying drops Am Phys Soc 2000 60 475 85 Search in Google Scholar

Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR, Witten TA. Contact line deposits in an evaporating drop. Am Phys Soc. 2000;62: 756–65. DeeganRD BakajinO DupontTF HuberG NagelSR WittenTA Contact line deposits in an evaporating drop Am Phys Soc 2000 62 756 65 Search in Google Scholar

Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR, Witten TA. Capillary flow as the cause of ring stains from dried liquid drops. Nature. 1997;389: 827–9. doi:10.1038/39827. DeeganRD BakajinO DupontTF HuberG NagelSR WittenTA Capillary flow as the cause of ring stains from dried liquid drops Nature 1997 389 827 9 10.1038/39827 Open DOISearch in Google Scholar

Ikegawa M, Azuma H. Droplet behaviors on substrates in thin-film formation using ink-jet printing. JSME Int J. 2004;47: 490–6. IkegawaM AzumaH Droplet behaviors on substrates in thin-film formation using ink-jet printing JSME Int J 2004 47 490 6 Search in Google Scholar

Wang J, Evans JRG. Drying behaviour of droplets of mixed powder suspensions. J Eur Ceram Soc. 2006;26: 3123–31. doi:10.1016/j.jeurceramsoc.2005.08.018. WangJ EvansJRG Drying behaviour of droplets of mixed powder suspensions J Eur Ceram Soc 2006 26 3123 31 10.1016/j.jeurceramsoc.2005.08.018 Open DOISearch in Google Scholar

Soares C. Gas turbine fuel systems and fuels. In: Gas turbines. Elsevier; Dallas, 2015, p.317–411. doi:10.1016/B978-0-12-410461-7.00007-9. SoaresC Gas turbine fuel systems and fuels In: Gas turbines Elsevier Dallas 2015 317 411 10.1016/B978-0-12-410461-7.00007-9 Open DOISearch in Google Scholar

Martyr AJ, Rogers DR. Chapter 15 – Measurement of liquid fuel, oil, and combustion air consumption. Engine Testing. 2021;5: 511–35. doi:10.1016/B978-0-12-821226-4.00015-2. MartyrAJ RogersDR Chapter 15 – Measurement of liquid fuel, oil, and combustion air consumption Engine Testing 2021 5 511 35 10.1016/B978-0-12-821226-4.00015-2 Open DOISearch in Google Scholar

Heng X, Yeates DB. Generation of high concentrations of respirable solid-phase aerosols from viscous fluids. Aerosol Sci Technol. 2018;52: 933–52. doi:10.1080/02786826.2018.1488078. HengX YeatesDB Generation of high concentrations of respirable solid-phase aerosols from viscous fluids Aerosol Sci Technol 2018 52 933 52 10.1080/02786826.2018.1488078 Open DOISearch in Google Scholar

Shimoda T, Morii K, Seki S, Kiguchi H. Introduction: the microliquid process. MRS Bull. 2003;28: 821–7. ShimodaT MoriiK SekiS KiguchiH Introduction: the microliquid process MRS Bull 2003 28 821 7 Search in Google Scholar

Xiao X, Li G, Liu T, Gu M. Experimental study of the jetting behavior of high-viscosity nanosilver inks in inkjet-based 3d printing. Nanomaterials (Basel). 2022;12: 3076. doi:10.3390/nano12173076. XiaoX LiG LiuT GuM Experimental study of the jetting behavior of high-viscosity nanosilver inks in inkjet-based 3d printing Nanomaterials (Basel) 2022 12 3076 10.3390/nano12173076 Open DOISearch in Google Scholar

Kwon KS. Experimental analysis of waveform effects on satellite and ligament behavior via in situ measurement of the drop-on-demand drop formation curve and the instantaneous jetting speed curve. J Micromech Microeng. 2010;20: 115005. doi:10.1088/0960-1317/20/11/115005. KwonKS Experimental analysis of waveform effects on satellite and ligament behavior via in situ measurement of the drop-on-demand drop formation curve and the instantaneous jetting speed curve J Micromech Microeng 2010 20 115005 10.1088/0960-1317/20/11/115005 Open DOISearch in Google Scholar

Lin CW, Kuo TH, Huang SH, Kuo YM, Wu WJ, Chen CC. Characterization of a piezoelectric inkjet aerosol generator for the study of bioaerosol survivability. Aerosol Air Qual Res. 2019;19: 959–70. doi:10.4209/aaqr.2018.07.0254. LinCW KuoTH HuangSH KuoYM WuWJ ChenCC Characterization of a piezoelectric inkjet aerosol generator for the study of bioaerosol survivability Aerosol Air Qual Res 2019 19 959 70 10.4209/aaqr.2018.07.0254 Open DOISearch in Google Scholar

Reitelshöfer S, Göttler M, Schmidt P, Treffer P, Landgraf M, Franke J. Aerosol-jet-printing silicone layers and electrodes for stacked dielectric elastomer actuators in one processing device. In: Proceeding of SPIE 9798, Electroactive Polymer Actuators and Devices (EAPAD) 2016, 15 April 2016; 2016, p.97981Y. doi:10.1117/12.2219226. ReitelshöferS GöttlerM SchmidtP TrefferP LandgrafM FrankeJ Aerosol-jet-printing silicone layers and electrodes for stacked dielectric elastomer actuators in one processing device In: Proceeding of SPIE 9798, Electroactive Polymer Actuators and Devices (EAPAD) 2016 15 April 2016 2016 97981Y 10.1117/12.2219226 Open DOISearch in Google Scholar

Chen BT, Yeh HC. An improved virtual impactor: design and performance. J Aerosol Sci. 1987;18: 203–14. doi:10.1016/0021-8502(87)90056-5. ChenBT YehHC An improved virtual impactor: design and performance J Aerosol Sci 1987 18 203 14 10.1016/0021-8502(87)90056-5 Open DOISearch in Google Scholar

Gupta AA, Bolduc A, Cloutier SG, Izquierdo R. 2016 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE; 2016. GuptaAA BolducA CloutierSG IzquierdoR 2016 IEEE International Symposium on Circuits and Systems (ISCAS) IEEE 2016 Search in Google Scholar

eISSN:
2083-134X
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Scienze materiali, altro, Nanomateriali, Materiali funzionali ed intelligenti, Caratteristica e proprietà dei materiali