INFORMAZIONI SU QUESTO ARTICOLO

Cita

Fig. 1

The Zeta-potential and size distribution of particle agglomerates in the synthesized samples. BIONs, bare iron oxide nanoparticles; OA, oleic acid; PEGMO, poly(ethylene) glycol monooleate; SPIONs, superpara-magnetic iron oxide nanoparticles.
The Zeta-potential and size distribution of particle agglomerates in the synthesized samples. BIONs, bare iron oxide nanoparticles; OA, oleic acid; PEGMO, poly(ethylene) glycol monooleate; SPIONs, superpara-magnetic iron oxide nanoparticles.

Fig. 2

Schematic representation of charges on the surface of magnetite nanoparticles as a function of pH. ZPC, zero-point charge.
Schematic representation of charges on the surface of magnetite nanoparticles as a function of pH. ZPC, zero-point charge.

Fig. 3

Schematic depiction of the stabilization of Fe3O4 nanoparticles in water. OA, oleic acid; PEGMO, poly(ethylene) glycol monooleate; SPION, superparamagnetic iron oxide nanoparticles.
Schematic depiction of the stabilization of Fe3O4 nanoparticles in water. OA, oleic acid; PEGMO, poly(ethylene) glycol monooleate; SPION, superparamagnetic iron oxide nanoparticles.

Fig. 4

Diffractograms of synthesized specimens taken with Fe Kα anode (λ = 1.937283 Å) (a), the same diffractograms converted to Cu Kα radiation (λ = 1.54178 Å) (b). BIONs, bare iron oxide nanoparticles; OA, oleic acid; PEGMO, poly(ethylene) glycol monooleate; SPIONs, superparamagnetic iron oxide nanoparticles.
Diffractograms of synthesized specimens taken with Fe Kα anode (λ = 1.937283 Å) (a), the same diffractograms converted to Cu Kα radiation (λ = 1.54178 Å) (b). BIONs, bare iron oxide nanoparticles; OA, oleic acid; PEGMO, poly(ethylene) glycol monooleate; SPIONs, superparamagnetic iron oxide nanoparticles.

Fig. 5

Guinier plots for evaluating radius of gyration Rg for the colloid dispersions (the fitting of the reference model (red line) to experimental SAXS data (grey, blue, green). BIONs, bare iron oxide nanoparticles; OA, oleic acid; PEGMO, poly(ethylene) glycol monooleate; SPIONs, superparamagnetic iron oxide nanoparticles.
Guinier plots for evaluating radius of gyration Rg for the colloid dispersions (the fitting of the reference model (red line) to experimental SAXS data (grey, blue, green). BIONs, bare iron oxide nanoparticles; OA, oleic acid; PEGMO, poly(ethylene) glycol monooleate; SPIONs, superparamagnetic iron oxide nanoparticles.

Fig. 6

McSAS fitting for evaluating size distribution and pair-distance distribution function p(r) obtained by GNOM. BIONs, bare iron oxide nanoparticles; OA, oleic acid; PEGMO, poly(ethylene) glycol monooleate; SPIONs, superparamagnetic iron oxide nanoparticles.
McSAS fitting for evaluating size distribution and pair-distance distribution function p(r) obtained by GNOM. BIONs, bare iron oxide nanoparticles; OA, oleic acid; PEGMO, poly(ethylene) glycol monooleate; SPIONs, superparamagnetic iron oxide nanoparticles.

Fig. 7

Particle size distributions obtained using McSAS. BIONs, bare iron oxide nanoparticles; OA, oleic acid; PEGMO, poly(ethylene) glycol monooleate; SPIONs, superparamagnetic iron oxide nanoparticles.
Particle size distributions obtained using McSAS. BIONs, bare iron oxide nanoparticles; OA, oleic acid; PEGMO, poly(ethylene) glycol monooleate; SPIONs, superparamagnetic iron oxide nanoparticles.

Fig. 8

Ab initio SAXS models of bare, OA-SPIONs, PEGMO460-OA-SPIONs, and PEGMO860-OA-SPIONs nanoparticles constructed using DAMMIN. OA, oleic acid; PEGMO, poly(ethylene) glycol monooleate; SAXS, small-angle X-ray scattering; SPIONs, superparamagnetic iron oxide nanoparticles.
Ab initio SAXS models of bare, OA-SPIONs, PEGMO460-OA-SPIONs, and PEGMO860-OA-SPIONs nanoparticles constructed using DAMMIN. OA, oleic acid; PEGMO, poly(ethylene) glycol monooleate; SAXS, small-angle X-ray scattering; SPIONs, superparamagnetic iron oxide nanoparticles.

Fig. 9

Magnetization curves of synthesized samples at a temperature of 300 K. BIONs, bare iron oxide nanoparticles; OA, oleic acid; PEGMO, poly(ethylene) glycol monooleate; SPIONs, superparamagnetic iron oxide nanoparticles.
Magnetization curves of synthesized samples at a temperature of 300 K. BIONs, bare iron oxide nanoparticles; OA, oleic acid; PEGMO, poly(ethylene) glycol monooleate; SPIONs, superparamagnetic iron oxide nanoparticles.

Fig. 10

FTIR spectra of pure OA, PEGMO460, and PEGMO860 in liquid form (left); FTIR spectra of BIONs, PEG460-OA-SPIONs, and PEG860-OA-SPIONs samples (right). BIONs, bare iron oxide nanoparticles; FTIR, fourier-transform infrared spectroscopy; OA, oleic acid; PEGMO, poly(ethylene) glycol monooleate; SPIONs, superparamagnetic iron oxide nanoparticles.
FTIR spectra of pure OA, PEGMO460, and PEGMO860 in liquid form (left); FTIR spectra of BIONs, PEG460-OA-SPIONs, and PEG860-OA-SPIONs samples (right). BIONs, bare iron oxide nanoparticles; FTIR, fourier-transform infrared spectroscopy; OA, oleic acid; PEGMO, poly(ethylene) glycol monooleate; SPIONs, superparamagnetic iron oxide nanoparticles.

Nanoparticles average size obtained by SAXS measurement.

Sample Average radius of nanoparticles obtained by SAXS (nm)
BIONs 14.6
OA–SPIONs 15.8
PEGMO460–OA–SPIONs 14.0
PEGMO860–OA–SPIONs 15.5

Saturation magnetization of the samples.

Samples Saturation magnetization Ms (emu/g)
BIONs (Fe3O4) 64.6 (Ha = 1.07 T)
OA-SPIONs 51.1 (Ha = 1.07 T)
PEGMO460-OA-SPIONs 39.0 (Ha = 1.00 T)
PEGMO860-OA-SPIONs 48.9 (Ha = 1.07 T)

ELS and DLS Experimental results of samples.

Samples Measurement temperature °C Mean value of potential (mV) Hydrodynamic diameter (nm) Polydispersity index (%)
BIONs 20 21.7 225 20.6
OA-SPIONs 20 −24.2 182 22.0
PEGMO860-OA-SPIONs 20 −23.3 101 19.5
PEGMO460-OA-SPIONs 20 −34.5 110 23.2

Average crystallite size of the samples calculated by Scherrer formula.

Sample Average size of crystallite estimated by XRD (Fe Kα; λ = 1.937Å) (nm) Crystalline lattice parameter (Å)
BIONs 20.0 8.3755
OA–SPIONs 21.8 8.3755
PEGMO460–OA–SPIONs 21.0 8.3725
PEGMO860–OA–SPIONs 23.1 8.3725
eISSN:
2083-134X
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Materials Sciences, other, Nanomaterials, Functional and Smart Materials, Materials Characterization and Properties