1. bookVolume 51 (2020): Edizione 1 (January 2020)
Dettagli della rivista
License
Formato
Rivista
eISSN
1899-8526
Prima pubblicazione
05 Feb 2007
Frequenza di pubblicazione
1 volta all'anno
Lingue
Inglese
Accesso libero

Sorption of oil products on the synthetic zeolite granules

Pubblicato online: 15 Oct 2020
Volume & Edizione: Volume 51 (2020) - Edizione 1 (January 2020)
Pagine: 1 - 7
Ricevuto: 02 Oct 2019
Accettato: 06 Jul 2020
Dettagli della rivista
License
Formato
Rivista
eISSN
1899-8526
Prima pubblicazione
05 Feb 2007
Frequenza di pubblicazione
1 volta all'anno
Lingue
Inglese

Auerbach, S. M., Carrado, K. A., & Dutta, P. K. (2003). Handbook of Zeolite Science and Technology. CRC Press.10.1201/9780203911167 Search in Google Scholar

Bandura, L., Franus, M., Józefaciuk, G., & Franus, W. (2015a). Synthetic zeolites from fly ash as effective mineral sorbents for land-based petroleum spills cleanup. Fuel, 147, 100-107. DOI: 10.1016/j.fuel.2015.01.067.10.1016/j.fuel.2015.01.067 Search in Google Scholar

Bandura, L., Franus, M., Panek, R., Woszuk, A., & Franus, W. (2015b). Characterization of zeolites and their use as adsorbents of petroleum substances. Przemysl Chemiczny, 94(3), 323-327. DOI: 10.15199/62.2015.3.11.10.15199/62.2015.3.11 Search in Google Scholar

Bandura, L., Woszuk, A., Kołodyńska, D., & Franus, W. (2017). Application of mineral sorbents for removal of petroleum substances: A review. Minerals, 7(3), 1–-5. DOI: 10.3390/min7030037.10.3390/min7030037 Search in Google Scholar

Carmody, O., Frost, R., Xi, Y., & Kokot, S. (2007). Adsorption of hydrocarbons on organo-clays-Implications for oil spill remediation. Journal of Colloid and Interface Science, 305(1), 17-24. DOI: 10.1016/j.jcis.2006.09.032.10.1016/j.jcis.2006.09.03217046013 Search in Google Scholar

Cheeseman, C. R., Tyrer, M., Greaves, R. I. W., Lupo, R. A., & Madan, S. (2012). U.S. Patent Application No 13/264,468. Search in Google Scholar

Franus, W., Jozefaciuk, G., Bandura, L., & Franus, M. (2017). Use of spent zeolite sorbents for the preparation of lightweight aggregates differing in microstructure. Minerals, 7(2). DOI: 10.3390/min7020025.10.3390/min7020025 Search in Google Scholar

Król, M., & Mikuła, A. (2017). Synthesis of the zeolite granulate for potential sorption application. Microporous and Mesoporous Materials, 243, 201-205. DOI: 10.1016/j.micromeso.2017.02.028.10.1016/j.micromeso.2017.02.028 Search in Google Scholar

Król, M., Minkiewicz, J., & Mozgawa, W. (2016a). IR spectroscopy studies of zeolites in geopolymeric materials derived from kaolinite. Journal of Molecular Structure, 1126, 200-206. DOI: 10.1016/j.molstruc.2016.02.027.10.1016/j.molstruc.2016.02.027 Search in Google Scholar

Król, M., & Mozgawa, W. (2019). Zeolite layer on metakaolin-based support. Microporous and Mesoporous Materials, 282(November 2018), 109-113. DOI: 10.1016/j.micromeso.2019.03.028.10.1016/j.micromeso.2019.03.028 Search in Google Scholar

Król, M., Mozgawa, W., Morawska, J., & Pichór, W. (2014). Spectroscopic investigation of hydrothermally synthesized zeolites from expanded perlite. Microporous and Mesoporous Materials, 196, 216-222. DOI: 10.1016/j.micromeso.2014.05.017.10.1016/j.micromeso.2014.05.017 Search in Google Scholar

Król, M., Wons, W., Brylska, E., Wróbel, B., & Mozgawa, W. (2016b). Wypalane kruszywo lekkie z dodatkiem zeolitów po sorpcji substancji ropopochodnych. Materiały Ceramiczne, 68(3), 259-266. Search in Google Scholar

Mozgawa, W., Król, M., & Pichór, W. (2009). Use of clinoptilolite for the immobilization of heavy metal ions and preparation of autoclaved building composites. Journal of Hazardous Materials, 168(2-3), 1482-1489. DOI: 10.1016/j.jhazmat.2009.03.037.10.1016/j.jhazmat.2009.03.03719368999 Search in Google Scholar

Muir, B., & Bajda, T. (2016). Organically modified zeolites in petroleum compounds spill cleanup - Production, efficiency, utilization. Fuel Processing Technology, 149, 153-162. DOI: 10.1016/j.fuproc.2016.04.010.10.1016/j.fuproc.2016.04.010 Search in Google Scholar

Pijarowski, P. M., & Tic, W. J. (2014). Research on using Mineral Sorbents for A Sorption Process in the Environment Contaminated with Petroleum Substances. Civil And Environmental Engineering Reports, 12(1), 83-93. DOI: 10.2478/ceer-2014-0008.10.2478/ceer-2014-0008 Search in Google Scholar

Rożek, P., Król, M., & Mozgawa, W. (2018). Spectroscopic studies of fly ash-based geopolymers. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 198, 283-289. DOI: 10.1016/j.saa.2018.03.034.10.1016/j.saa.2018.03.03429558727 Search in Google Scholar

Sakthivel, T., Reid, D. L., Goldstein, I., Hench, L., & Seal, S. (2013). Hydrophobic high surface area zeolites derived from fly ash for oil spill remediation. Environmental Science and Technology, 47(11), 5843-5850. DOI: 10.1021/es3048174.10.1021/es304817423634731 Search in Google Scholar

Zadaka-Amir, D., Bleiman, N., & Mishael, Y. G. (2013). Sepiolite as an effective natural porous adsorbent for surface oil-spill. Microporous and Mesoporous Materials, 169, 153-159. DOI: 10.1016/j.micromeso.2012.11.002.10.1016/j.micromeso.2012.11.002 Search in Google Scholar

Zhao, M. Q., Huang, J. Q., Zhang, Q., Luo, W. L., & Wei, F. (2011). Improvement of oil adsorption performance by a sponge-like natural vermiculite-carbon nanotube hybrid. Applied Clay Science, 53(1), 1-7. DOI: 10.1016/j.clay.2011.04.003.10.1016/j.clay.2011.04.003 Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo