1. bookVolumen 51 (2020): Heft 1 (January 2020)
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
1899-8526
Erstveröffentlichung
05 Feb 2007
Erscheinungsweise
1 Hefte pro Jahr
Sprachen
Englisch
Uneingeschränkter Zugang

Sorption of oil products on the synthetic zeolite granules

Online veröffentlicht: 15 Oct 2020
Volumen & Heft: Volumen 51 (2020) - Heft 1 (January 2020)
Seitenbereich: 1 - 7
Eingereicht: 02 Oct 2019
Akzeptiert: 06 Jul 2020
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
1899-8526
Erstveröffentlichung
05 Feb 2007
Erscheinungsweise
1 Hefte pro Jahr
Sprachen
Englisch
Abstract

In this work, lightweight granules of zeolite Na-P1 based on expanded glass aggregates were synthesized for the application in oil products’ sorption. The sorption of gasoline, diesel and silicone oil tests were also conducted for raw expanded glass, zeolite A, clinoptilolite and mineral sorbent available at a fuel station. All sorbents were also characterized in terms of the phase composition (X-ray diffraction) and structure (infrared spectroscopy). The zeolite Na-P1 granules achieved the highest values of sorption capacities (1.8, 2.1 and 2.6 g/g, respectively), which makes them promising materials for oils’ removal.

Auerbach, S. M., Carrado, K. A., & Dutta, P. K. (2003). Handbook of Zeolite Science and Technology. CRC Press.10.1201/9780203911167 Search in Google Scholar

Bandura, L., Franus, M., Józefaciuk, G., & Franus, W. (2015a). Synthetic zeolites from fly ash as effective mineral sorbents for land-based petroleum spills cleanup. Fuel, 147, 100-107. DOI: 10.1016/j.fuel.2015.01.067.10.1016/j.fuel.2015.01.067 Search in Google Scholar

Bandura, L., Franus, M., Panek, R., Woszuk, A., & Franus, W. (2015b). Characterization of zeolites and their use as adsorbents of petroleum substances. Przemysl Chemiczny, 94(3), 323-327. DOI: 10.15199/62.2015.3.11.10.15199/62.2015.3.11 Search in Google Scholar

Bandura, L., Woszuk, A., Kołodyńska, D., & Franus, W. (2017). Application of mineral sorbents for removal of petroleum substances: A review. Minerals, 7(3), 1–-5. DOI: 10.3390/min7030037.10.3390/min7030037 Search in Google Scholar

Carmody, O., Frost, R., Xi, Y., & Kokot, S. (2007). Adsorption of hydrocarbons on organo-clays-Implications for oil spill remediation. Journal of Colloid and Interface Science, 305(1), 17-24. DOI: 10.1016/j.jcis.2006.09.032.10.1016/j.jcis.2006.09.03217046013 Search in Google Scholar

Cheeseman, C. R., Tyrer, M., Greaves, R. I. W., Lupo, R. A., & Madan, S. (2012). U.S. Patent Application No 13/264,468. Search in Google Scholar

Franus, W., Jozefaciuk, G., Bandura, L., & Franus, M. (2017). Use of spent zeolite sorbents for the preparation of lightweight aggregates differing in microstructure. Minerals, 7(2). DOI: 10.3390/min7020025.10.3390/min7020025 Search in Google Scholar

Król, M., & Mikuła, A. (2017). Synthesis of the zeolite granulate for potential sorption application. Microporous and Mesoporous Materials, 243, 201-205. DOI: 10.1016/j.micromeso.2017.02.028.10.1016/j.micromeso.2017.02.028 Search in Google Scholar

Król, M., Minkiewicz, J., & Mozgawa, W. (2016a). IR spectroscopy studies of zeolites in geopolymeric materials derived from kaolinite. Journal of Molecular Structure, 1126, 200-206. DOI: 10.1016/j.molstruc.2016.02.027.10.1016/j.molstruc.2016.02.027 Search in Google Scholar

Król, M., & Mozgawa, W. (2019). Zeolite layer on metakaolin-based support. Microporous and Mesoporous Materials, 282(November 2018), 109-113. DOI: 10.1016/j.micromeso.2019.03.028.10.1016/j.micromeso.2019.03.028 Search in Google Scholar

Król, M., Mozgawa, W., Morawska, J., & Pichór, W. (2014). Spectroscopic investigation of hydrothermally synthesized zeolites from expanded perlite. Microporous and Mesoporous Materials, 196, 216-222. DOI: 10.1016/j.micromeso.2014.05.017.10.1016/j.micromeso.2014.05.017 Search in Google Scholar

Król, M., Wons, W., Brylska, E., Wróbel, B., & Mozgawa, W. (2016b). Wypalane kruszywo lekkie z dodatkiem zeolitów po sorpcji substancji ropopochodnych. Materiały Ceramiczne, 68(3), 259-266. Search in Google Scholar

Mozgawa, W., Król, M., & Pichór, W. (2009). Use of clinoptilolite for the immobilization of heavy metal ions and preparation of autoclaved building composites. Journal of Hazardous Materials, 168(2-3), 1482-1489. DOI: 10.1016/j.jhazmat.2009.03.037.10.1016/j.jhazmat.2009.03.03719368999 Search in Google Scholar

Muir, B., & Bajda, T. (2016). Organically modified zeolites in petroleum compounds spill cleanup - Production, efficiency, utilization. Fuel Processing Technology, 149, 153-162. DOI: 10.1016/j.fuproc.2016.04.010.10.1016/j.fuproc.2016.04.010 Search in Google Scholar

Pijarowski, P. M., & Tic, W. J. (2014). Research on using Mineral Sorbents for A Sorption Process in the Environment Contaminated with Petroleum Substances. Civil And Environmental Engineering Reports, 12(1), 83-93. DOI: 10.2478/ceer-2014-0008.10.2478/ceer-2014-0008 Search in Google Scholar

Rożek, P., Król, M., & Mozgawa, W. (2018). Spectroscopic studies of fly ash-based geopolymers. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 198, 283-289. DOI: 10.1016/j.saa.2018.03.034.10.1016/j.saa.2018.03.03429558727 Search in Google Scholar

Sakthivel, T., Reid, D. L., Goldstein, I., Hench, L., & Seal, S. (2013). Hydrophobic high surface area zeolites derived from fly ash for oil spill remediation. Environmental Science and Technology, 47(11), 5843-5850. DOI: 10.1021/es3048174.10.1021/es304817423634731 Search in Google Scholar

Zadaka-Amir, D., Bleiman, N., & Mishael, Y. G. (2013). Sepiolite as an effective natural porous adsorbent for surface oil-spill. Microporous and Mesoporous Materials, 169, 153-159. DOI: 10.1016/j.micromeso.2012.11.002.10.1016/j.micromeso.2012.11.002 Search in Google Scholar

Zhao, M. Q., Huang, J. Q., Zhang, Q., Luo, W. L., & Wei, F. (2011). Improvement of oil adsorption performance by a sponge-like natural vermiculite-carbon nanotube hybrid. Applied Clay Science, 53(1), 1-7. DOI: 10.1016/j.clay.2011.04.003.10.1016/j.clay.2011.04.003 Search in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo