Accesso libero

An Ice Track Equipped with Optical Sensors for Determining the Influence of Experimental Conditions on the Sliding Velocity

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Maeno, N., Arakawa, M., Yasutome, A., Mizukami, N., & Kanazawa, S. (2003). Ice-ice friction measurements, and water lubrication and adhesion-shear mechanisms. Can. J. Phys., 81, 241–249. doi:10.1139/P03-023.10.1139/p03-023Open DOISearch in Google Scholar

2. Maeno, N., & Arakawa, M. (2004). Adhesion shear theory of ice friction at low sliding velocities, combined with ice sintering. J. Appl. Phys., 95, 134–139. doi:10.1063/1.1633654.10.1063/1.1633654Open DOISearch in Google Scholar

3. Ling, E.J.Y., Uong, V., Renault-Crispo, J.S., Kietzig, A.M., & Servio, P. (2016). Reducing ice adhesion on nonsmooth metallic surfaces: Wettability and topography effects. ACS Appl. Mater. Interfaces, 8, 8789–8800. doi:10.1021/acsami.6b00187.10.1021/acsami.6b0018726953827Search in Google Scholar

4. Sukhorukov, S., & Marchenko, A. (2014). Geometrical stick-slip between ice and steel. Cold Reg. Sci. Technol, 100, 8–19. doi:10.1016/j.coldregions.2013.12.007.10.1016/j.coldregions.2013.12.007Open DOISearch in Google Scholar

5. Kietzig, A.-M., Hatzikiriakos, S.G., & Englezos, P. (2010). Physics of ice friction. J. Appl. Phys., 107, 81101. doi:10.1063/1.3340792.10.1063/1.3340792Search in Google Scholar

6. Kietzig, A.M., Hatzikiriakos, S.G., & Englezos, P. (2009). Ice friction: The effects of surface roughness, structure, and hydrophobicity. J. Appl. Phys., 106, 24303. doi:10.1063/1.3173346.10.1063/1.3173346Open DOISearch in Google Scholar

7. Kietzig, A.M., Hatzikiriakos, S.G., & Englezos, P. (2010). Ice friction: The effect of thermal conductivity. J. Glaciol., 56, 473–479. doi:10.3189/002214310792447752.10.3189/002214310792447752Open DOISearch in Google Scholar

8. Spagni, A., Berardo, A., Marchetto, D., Gualtieri, E., Pugno, N.M., & Valeri, S. (2016). Friction of rough surfaces on ice: Experiments and modeling. Wear, 368–369, 258–266. doi:10.1016/j.wear.2016.10.001.10.1016/j.wear.2016.10.001Search in Google Scholar

9. Paliy, M., Braun, O.M., & Consta, S. (2006). The friction properties of an ultrathin confined water film. Tribol. Lett., 23, 7–14. doi:10.1007/s11249-006-9104-x.10.1007/s11249-006-9104-xOpen DOISearch in Google Scholar

10. Baurle, L., Kaempfer, T.U., Szabo, D., & Spencer, N.D. (2007). Sliding friction of polyethylene on snow and ice: Contact area and modeling. Cold Reg. Sci. Technol., 47, 276–289. doi:10.1016/j.coldregions.2006.10.005.10.1016/j.coldregions.2006.10.005Search in Google Scholar

11. Ducret, S., Zahouani, H., Midol, A., Lanteri, P., & Mathia, T.G. (2005). Friction and abrasive wear of UHWMPE sliding on ice. Wear, 26–31. doi:10.1016/j.wear.2004.09.026.10.1016/j.wear.2004.09.026Open DOISearch in Google Scholar

12. Makkonen, L., & Tikanmaki, M. (2014). Modeling the friction of ice. Cold Reg. Sci. Technol., 102, 84–93. doi:10.1016/j.coldregions.2014.03.002.10.1016/j.coldregions.2014.03.002Open DOISearch in Google Scholar

13. Rohm, S., Hasler, M., Knoflach, C., van Putten, J., Unterberger, S.H., Schindelwig, K., Lackner, R., & Nachbauer, W. (2015). Friction Between steel and snow in dependence of the steel roughness. Tribol. Lett., 59, 27. doi:10.1007/s11249-015-0554-x.10.1007/s11249-015-0554-xOpen DOISearch in Google Scholar

14. Hasler, M., Schindelwig, K., Mayr, B., Knoflach, C., Rohm, S., van Putten, J., & Nachbauer, W. (2016). A novel ski–snow tribometer and its precision. Tribol. Lett., 63, 33. doi:10.1007/s11249-016-0719-2.10.1007/s11249-016-0719-2Open DOISearch in Google Scholar

15. Jansons, E., Lungevics, J., & Gross, K.A. (2016). Surface roughness measure that best correlates to ease of sliding. Eng. Rural Dev.Search in Google Scholar

eISSN:
0868-8257
Lingua:
Inglese
Frequenza di pubblicazione:
6 volte all'anno
Argomenti della rivista:
Physics, Technical and Applied Physics