Uneingeschränkter Zugang

An Ice Track Equipped with Optical Sensors for Determining the Influence of Experimental Conditions on the Sliding Velocity


Zitieren

1. Maeno, N., Arakawa, M., Yasutome, A., Mizukami, N., & Kanazawa, S. (2003). Ice-ice friction measurements, and water lubrication and adhesion-shear mechanisms. Can. J. Phys., 81, 241–249. doi:10.1139/P03-023.10.1139/p03-023Open DOISearch in Google Scholar

2. Maeno, N., & Arakawa, M. (2004). Adhesion shear theory of ice friction at low sliding velocities, combined with ice sintering. J. Appl. Phys., 95, 134–139. doi:10.1063/1.1633654.10.1063/1.1633654Open DOISearch in Google Scholar

3. Ling, E.J.Y., Uong, V., Renault-Crispo, J.S., Kietzig, A.M., & Servio, P. (2016). Reducing ice adhesion on nonsmooth metallic surfaces: Wettability and topography effects. ACS Appl. Mater. Interfaces, 8, 8789–8800. doi:10.1021/acsami.6b00187.10.1021/acsami.6b0018726953827Search in Google Scholar

4. Sukhorukov, S., & Marchenko, A. (2014). Geometrical stick-slip between ice and steel. Cold Reg. Sci. Technol, 100, 8–19. doi:10.1016/j.coldregions.2013.12.007.10.1016/j.coldregions.2013.12.007Open DOISearch in Google Scholar

5. Kietzig, A.-M., Hatzikiriakos, S.G., & Englezos, P. (2010). Physics of ice friction. J. Appl. Phys., 107, 81101. doi:10.1063/1.3340792.10.1063/1.3340792Search in Google Scholar

6. Kietzig, A.M., Hatzikiriakos, S.G., & Englezos, P. (2009). Ice friction: The effects of surface roughness, structure, and hydrophobicity. J. Appl. Phys., 106, 24303. doi:10.1063/1.3173346.10.1063/1.3173346Open DOISearch in Google Scholar

7. Kietzig, A.M., Hatzikiriakos, S.G., & Englezos, P. (2010). Ice friction: The effect of thermal conductivity. J. Glaciol., 56, 473–479. doi:10.3189/002214310792447752.10.3189/002214310792447752Open DOISearch in Google Scholar

8. Spagni, A., Berardo, A., Marchetto, D., Gualtieri, E., Pugno, N.M., & Valeri, S. (2016). Friction of rough surfaces on ice: Experiments and modeling. Wear, 368–369, 258–266. doi:10.1016/j.wear.2016.10.001.10.1016/j.wear.2016.10.001Search in Google Scholar

9. Paliy, M., Braun, O.M., & Consta, S. (2006). The friction properties of an ultrathin confined water film. Tribol. Lett., 23, 7–14. doi:10.1007/s11249-006-9104-x.10.1007/s11249-006-9104-xOpen DOISearch in Google Scholar

10. Baurle, L., Kaempfer, T.U., Szabo, D., & Spencer, N.D. (2007). Sliding friction of polyethylene on snow and ice: Contact area and modeling. Cold Reg. Sci. Technol., 47, 276–289. doi:10.1016/j.coldregions.2006.10.005.10.1016/j.coldregions.2006.10.005Search in Google Scholar

11. Ducret, S., Zahouani, H., Midol, A., Lanteri, P., & Mathia, T.G. (2005). Friction and abrasive wear of UHWMPE sliding on ice. Wear, 26–31. doi:10.1016/j.wear.2004.09.026.10.1016/j.wear.2004.09.026Open DOISearch in Google Scholar

12. Makkonen, L., & Tikanmaki, M. (2014). Modeling the friction of ice. Cold Reg. Sci. Technol., 102, 84–93. doi:10.1016/j.coldregions.2014.03.002.10.1016/j.coldregions.2014.03.002Open DOISearch in Google Scholar

13. Rohm, S., Hasler, M., Knoflach, C., van Putten, J., Unterberger, S.H., Schindelwig, K., Lackner, R., & Nachbauer, W. (2015). Friction Between steel and snow in dependence of the steel roughness. Tribol. Lett., 59, 27. doi:10.1007/s11249-015-0554-x.10.1007/s11249-015-0554-xOpen DOISearch in Google Scholar

14. Hasler, M., Schindelwig, K., Mayr, B., Knoflach, C., Rohm, S., van Putten, J., & Nachbauer, W. (2016). A novel ski–snow tribometer and its precision. Tribol. Lett., 63, 33. doi:10.1007/s11249-016-0719-2.10.1007/s11249-016-0719-2Open DOISearch in Google Scholar

15. Jansons, E., Lungevics, J., & Gross, K.A. (2016). Surface roughness measure that best correlates to ease of sliding. Eng. Rural Dev.Search in Google Scholar

eISSN:
0868-8257
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
6 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Physik, Technische und angewandte Physik