INFORMAZIONI SU QUESTO ARTICOLO

Cita

[1] Kukuča, P., Barta, D., Labuda, R. & Gechev, T. (2018). Engine with unconventional crank mechanism FIK1. MATEC Web of Conferences 244, 03004. DOI: 10.1051/matecconf/201824403004. Open DOISearch in Google Scholar

[2] Mieczkowski, G., Szpica, D., Borawski, A., Diliunas, S., Pilkaite, T. & Lesis, V. (2021). Application of smart materials in the actuation system of a gas injector. Materials 14(22), 6984. DOI: 10.3390/ma14226984. Open DOISearch in Google Scholar

[3] Babadi, M.N., Kheradmand, S. & Bae, C. (2020). Experimental and computational investigation of diesel and gasoline injection in a direct injection compression ignition engine. International Journal of Automotive Technology 21(1), 23–32. DOI: 10.1007/s12239-020-0003-1 Open DOISearch in Google Scholar

[4] Aulin, D., Klymenko, O., Falendysh, A., Kletska, O. & Dizo, J. (2020). Improvement of diesel injector nozzle test techniques. IOP Conference Series: Materials Science and Engineering 985(1), 012031. DOI: 10.1088/1757-899X/985/1/012031. Open DOISearch in Google Scholar

[5] Droździel, P. (2008). The influence of the vehicle work organization conditions on the engine start-up parameters. Eksploatacja i Niezawodnosc – Maintenance and Reliability 37(1), 72-74. Search in Google Scholar

[6] Eliasz, J., Osipowicz, T., Abramek, K.F., Matuszak, Z. & Mozga, L. (2020). Fuel pretreatment systems in modern ci engines. Catalysts 10(6), 696. DOI: 10.3390/catal10060696. Open DOISearch in Google Scholar

[7] Szpica, D. (2018). Investigating fuel dosage non-repeatability of low-pressure gas-phase injectors. Flow Measurement and Instrumentation 59, 147-156. DOI: 10.1016/j.flowmeasinst.2017.12.009. Open DOISearch in Google Scholar

[8] Šarkan, B., Jaśkiewicz, M., Kubiak, P., Tarnapowicz, D. & Loman, M. (2022). Exhaust emissions measurement of a vehicle with retrofitted LPG system. Energies 15(3), 1184. DOI: 10.3390/en15031184. Open DOISearch in Google Scholar

[9] Wierzbicki, S. & Śmieja, M. (2018). Use of biogas to power diesel engines with common rail fuel systems. 17th International Conference Diagnostics of Machines and Vehicles, MATEC Web of Conference 182, 01018. DOI: 10.1051/matecconf/201818201018. Open DOISearch in Google Scholar

[10] Ding, S.L., Song, E.Z., Litak, G., Yang, L.P., Wang, Y.Y. & Ma, X.Z. (2017). Analysis of chaos in the combustion process of premixed natural gas engine. Applied Thermal Engineering 121, 768-778. DOI: 10.1016/j.applthermaleng.2017.04.109. Open DOISearch in Google Scholar

[11] Lebedevas, S. & Čepaitis, T. (2021). Parametric analysis of the combustion cycle of a diesel engine for operation on natural gas. Sustainability 13(5), 2773. DOI: 10.3390/su13052773. Open DOISearch in Google Scholar

[12] Biały, M., Wendeker, M., Magryta, P., Czyż, Z. & Sochaczewski, R. (2014). CFD model of the mixture formation process of the CNG direct injection engine. SAE Technical Papers 109725. DOI: 10.4271/2014-01-2575. Open DOISearch in Google Scholar

[13] Dziewiątkowski, M. & Szpica, D. (2021). Evaluation of the conversion rate regarding hydrocarbons contained in the exhaust eases of an engine fuelled with compressed natural gas (CNG) using different catalysts operating at different temperatures. Mechanika 27(6), 492-97. Search in Google Scholar

[14] Jurkovic, M., Kalina, T., Skrucany, T., Gorzelanczyk, P. & Luptak, V. (2020). Environmental impacts of introducing LNG as alternative fuel for urban buses - case study in Slovakia. Promet-Traffic & Transportation 32(6), 837-847. DOI: 10.7307/ptt.v32i6.3564. Open DOISearch in Google Scholar

[15] Langshaw, L., Ainalis, D., Acha, S., Shah, N. & Stettler, M.E. (2020). Environmental and economic analysis of liquefied natural gas (LNG) for heavy goods vehicles in the UK: A Well-to-Wheel and total cost of ownership evaluation. Energy Policy 137, 111161. DOI: 10.1016/j.enpol.2019.111161. Open DOISearch in Google Scholar

[16] Labaj, J. & Barta, D. (2006). Unsteady flow simulation and combustion of ethanol in diesel engines. Komunikacie 8(2), 27-37. Search in Google Scholar

[17] Duda, K., Wierzbicki, S., Mikulski, M., Konieczny Ł., Łazarz, B. & Letuń-Łątka, M. (2021). Emissions from a medium-duty crdi engine fuelled with diesel-biodiesel blends. Transport Problems 16(1), 39-49. DOI: 10.21307/tp-2021-004. Open DOISearch in Google Scholar

[18] Górski, K., Sander, P. & Longwic, R. (2018). The assessment of ecological parameters of diesel engine supplied with mixtures of canola oil with n-hexane. IOP Conference Series: Materials Science and Engineering 421(4), 042025. DOI: 10.1088/1757-899X/421/4/042025. Open DOISearch in Google Scholar

[19] Hunicz, J., Mikulski, M., Shukla, P.C. & Gęca, M.S. (2022). Partially premixed combustion of hydrotreated vegetable oil in a diesel engine: Sensitivity to boost and exhaust gas recirculation. Fuel 307, 121910. DOI: 10.1016/j.fuel.2021.121910. Open DOISearch in Google Scholar

[20] Orynycz, O. & Świć, A. (2018). The Effects of material’s transport on various steps of production system on energetic efficiency of biodiesel production. Sustainability 10(8), 2736. DOI: 10.3390/su10082736. Open DOISearch in Google Scholar

[21] Szmigielski, M., Zarajczyk, J., Węgrzyn, A., Leszczyński, N., Kowalczuk, J., Andrejko, D., Krzysiak, Z., Samociuk, W. & Zarajczyk, K. (2018). Testing the technological line for the production of alternative fuels. Przemysł Chemiczny 97(7), 1079-1082. Search in Google Scholar

[22] Hurtová I., Sejkorová, M. & Verner, J. (2019). A study of diesel particulate filter impact on engine oil quality. Transport Means - Proceedings of the International Conference, 691-695. Search in Google Scholar

[23] Sejkorova, M. & Hurtova, I. (2019). Engine oil analysis - effective instrument to evaluate reliability of tractor engines. Engineering for Rural Development 18, 971-976. Search in Google Scholar

[24] Wolak, A., Zając, G. & Słowik, T. (2021). Measuring kinematic viscosity of engine oils: A comparison of data obtained from four different devices. Sensors 21(7), 2530. DOI: 10.3390/s21072530. Open DOISearch in Google Scholar

[25] Sejkorová, M., Verner, J., Sejkora, F., Hurtová, I. & Senkýř, J. (2018). Analysis of operation wear of brake fluid used in a Volvo car. Transport Means - Proceedings of the International Conference, 2018-October, pp. 592-596. Search in Google Scholar

[26] Verner, J. (2021). Overview of the development of emission standards for the reduction of air pollution by nonroad mobile machinery (in Czech). Prener’s Contacts 16, 2, DOI: 10.46585/pc.2021.2.1742. Open DOISearch in Google Scholar

[27] Wasilewski, J., Szyszlak-Bargłowicz, J., Zając, G. & Szczepanik, M. (2020). Assessment of CO2 emission by tractor engine at varied control settings of fuel unit. Agricultural Engineering 24(4), 105-115. DOI: 10.1515/agriceng-2020-0040. Open DOISearch in Google Scholar

[28] Pielecha, J., Skobiej, K. & Kurtyka, K. (2020). Exhaust emissions and energy consumption analysis of conventional, hybrid, and electric vehicles in real driving cycles. Energies 13(23), 6423. DOI: 10.3390/en13236423. Open DOISearch in Google Scholar

[29] Kritsanaviparkporn, E., Baena-Moreno, F.M. & Reina, T.R. (2021). Catalytic converters for vehicle exhaust: fundamental aspects and technology overview for newcomers to the field. Chemistry 3(2), 630-646. DOI: 10.3390/chemistry3020044. Open DOISearch in Google Scholar

[30] Slavin, V., Shuba, Y., Caban, J., Matijosius, J., Rimkus, A., Korpach, A. & Gutarevych, S. (2022). The performance of a car with various engine power systems – part I. LOGI – Scientific Journal on Transport and Logistics 13(1), DOI: 10.2478/logi-2022-0012 Open DOISearch in Google Scholar

[31] Šarkan, B., Hudec, J., Sejkorova, M., Kuranc, A. & Kiktova, M. (2021). Calculation of the production of exhaust emissions in the laboratory conditions. Journal of Physics: Conference Series 1736(1), 012022. DOI: 10.1088/1742-6596/1736/1/012022. Open DOISearch in Google Scholar

[32] Gutarevych, Y., Shuba, Y., Matijošius, J., Karev, S., Sokolovskij, E. & Rimkus, A. (2018). Intensification of the combustion process in a gasoline engine by adding a hydrogen-containing gas. International Journal of Hydrogen Energy 43, 16334-16343. DOI: 10.1016/j.ijhydene.2018.06.124. Open DOISearch in Google Scholar

[33] Jereb, B., Stopka, O. & Skrúcaný, T. (2021). Methodology for estimating the effect of traffic flow management on fuel consumption and CO2 production: A case study of Celje, Slovenia. Energies 2021, 14(6), 1673. DOI: 10.3390/en14061673. Open DOISearch in Google Scholar

[34] Skrucany, T., Stopková, M., Stopka, O., Kalašová, A. & Ovčiarik, P. (2021). User’s determination of a proper method for quantifying fuel consumption of a passenger car with compression ignition engine in specific operation conditions. Open Engineering 11(1), 151-160. DOI: 10.1515/eng-2021-0018. Open DOISearch in Google Scholar

eISSN:
2336-3037
Lingua:
Inglese
Frequenza di pubblicazione:
Volume Open
Argomenti della rivista:
Business and Economics, Business Management, Industries, Transportation, Logistics, Air Traffic, Shipping