Accesso libero

Inhibition efficiency of sodium salts of carboxylic acids on corrosion of lead in archive environment

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Schotte, B. A study of electrolytic reduction of corroded lead objects and application, characterization and testing of a protective lead carboxylate coating. Disertační práce, Universiteit Gent: Faculty of Science, 2007.Search in Google Scholar

2. Selwyn, L.; et al. Lead (Pb). In Metals and Corrosion: A Handbook for the Conservation Professional. 1st ed.; Canadian Conservation Institute: Canada, 2004; pp 115–123. ISBN 0-662-37984-5.Search in Google Scholar

3. Kolektiv autorů. Konzervování a restaurování olova a jeho slitin. In Konzervování a restaurování kovů. 1st ed.; Technické muzeum v Brně: Brno, 2011; pp 526-544. ISBN 978-80-86413-70-9Search in Google Scholar

4. Costa, V. Electrochemistry as a conservation tool: an overview. Conservation Science, 2003, 88-95.Search in Google Scholar

5. Jareš, V. Metalografie neželezných kovů. 1st ed.; Nakladatelství ČSAV: Praha, 1950.Search in Google Scholar

6. Vojtěch, D. Olovo a jeho slitiny. In Materiály a jejich mezní stavy. 1st ed.; VŠCHT: Praha, 2010; pp 35–36. ISBN 978-80-7080-741-5.Search in Google Scholar

7. Kratochvíl, B.; Švorčík, V.; Vojtěch, D. Slitiny neželezných kovů. In Úvod do studia materiálů. 1st ed.; VŠCHT: Praha, 2005; pp 164–165. ISBN 80-7080-568-4.Search in Google Scholar

8. Costa,V.; Urban, F. Lead and its alloys: metallurgy, deterioration and conservation. Reviews in Conservation2005, 6, 48–62.Search in Google Scholar

9. Schotte, B.; Adriens, A. The treatment of corroded lead artefacts. Studies in Conservation2006, 51, 1–8.Search in Google Scholar

10. Lyon, S. B. Corrosion of Lead and its Alloys. Corrosion and Protection Center. University of Manchester: Manchester, 2010.10.1016/B978-044452787-5.00098-6Search in Google Scholar

11. Leygraf, C.; Graedel, T. E. Atmospheric Corrosion of Lead. In Atmospheric Corrosion, 1st ed.; Canada, 2000; pp 295–304. ISBN 0-471-37219-6.Search in Google Scholar

12. Niklasson, A.; Johansson, L.; Svensson, J. The influence of relative humidity and temperature on the acetic acid vapour-induced atmospheric corrosion of lead. Corrosion Science2008, 50, 3031–3037.Search in Google Scholar

13. Ryhl-Svendsen, M. Corrosivity measurements of indoor museum environments using lead coupons as dosimeters. Journal of Cultural Heritage2008, 9, 285–293.10.1016/j.culher.2008.01.005Search in Google Scholar

14. Angeliny, E.; Grassini, S.: Underwater corrosion of metallic heritage artefacts. In Corrosion and conservation of cultural heritage metallic artefacts, 1st ed.; Woodhead Publishing Limited: Oxford, 2013; pp 236–259.Search in Google Scholar

15. Grayburn, R.; et al. Time-lapse synchrotron X-ray diffraction to monitor conservation coatings for heritage lead in atmospheres polluted with oak-emitted volatile organic compounds. Corrosion Science2014, 82, 280–289.Search in Google Scholar

16. Sastri, V. S. Vapor phase corrosion inhibitors. In Corrosion Inhibitors Principles and Aplications, 1st ed.; John Wiley and Sons Ltd: Chichester, 1998, pp 787–822.Search in Google Scholar

17. Guidelines for the Storage and Display of Archaeological Metalwork [Online]. Engish heritage, 2013, pp 12-13. http://www.english-heritage.org.uk/content/learn/conservation/2543455/2543024/guidelines-for-the-storage-and-display-of-archaeological-metalwork.pdf (accessed 11 Jan 2019)Search in Google Scholar

18. Ďurovič, M.; et al. Restaurování a konzervování archiválií a knih, 1st ed.; Paseka: Praha, 2002. ISBN 80-7185-383-6.Search in Google Scholar

19. Vávrová, P. Koroze a degradace papíru. Koroze a degradace materiálu. http://www.vscht.cz/met/stranky/vyuka/predmety/koroze_materialu_pro_restauratory/kadm/pdf/1_3.pdf (accessed 11 Jan 2019).Search in Google Scholar

20. Proniewicz, L. M.; Paluszkiewicz, C.; Weselucha-Birczynska, A.; Baranski, A.; Dutka, D. FT-IR and FT-Raman study of hydrothermally degraded groundwood containing paper. Journal of Molecular Structure2002, 614, 345–353.Search in Google Scholar

21. Ďurovič, M. Vlastnosti papíru a jeho degradace. http://www.vscht.cz/met/stranky/vyuka/labcv/labor/res_vlastnosti_papiru/teorie.htm (accessed 11 Jan 2019).Search in Google Scholar

22. Hatchfield, B. P. Pollutants in the Museum Environment; Archetype Publications: London, 2002. ISBN 1-873132-96-4.Search in Google Scholar

23. Gibson, L. T.; Watt, C. M. Acetic and formic acids emitted from wood samples and their effect on selected materials in museum environments. Corrosion Science 2010, 52, 172–178.Search in Google Scholar

24. Coles, E. L.; Gibson J. G.; Hinde, R. M.: The corrosion of lead by dilute aqueous organic acids, Journal of Applied Chemistry1958, 341-348.10.1002/jctb.5010080511Search in Google Scholar

25. Schotte, B.; Adriens, A. The treatment of corroded lead artefacts. Studies in Conservation2006, 51, 1–8.Search in Google Scholar

26. Turgoose, S. The corrosion of lead and tin: before and after excavation. In Lead and Tin Studies in Conservation and Technology, United Kingdom Institute for Conservation: London, 1985, pp 15–23.Search in Google Scholar

27. Niklasson, A.; Johansson, L.; Svensson, J. Atmospheric corrosion of historical organ pipes´influence of acetic and formic acid vapour and water leaching on lead. Proceedings of Metal 2004, 179–273.Search in Google Scholar

28. Stambolov, T. The Corrosion and Conservation of Metallic Antiquities and Works of Arts. Central research laboratory of objects of art and science: Amsterdam, 1985, pp 160-173.Search in Google Scholar

29. Nejedlý, V. Restaurování sochy Atlanta z astronomické věže pražského Klementina, Zprávy památkové péče LVII 1997, 2, 46-49.Search in Google Scholar

30. Caley, E. Coatings and incrustations on lead objects from the agora and the method used for their removal. Studies in Conservation1955, 2, 49–54.10.1179/sic.1955.007Search in Google Scholar

31. Organ, R. Use of ion-exchange resin in the treatment of lead objects. Museums Journal1953, 53, 49–52.Search in Google Scholar

32. Škeřík, J. Receptář pro elektrotechnika. 3rd ed. Státní nakladatelství technické literatury: Praha, 1982.Search in Google Scholar

33. Fawzy, M. A., et al. Corrosion behaviour of Pb-Sn binary alloys in acid solutions. Surface and Coatings Technology1981, 14, 257–264.10.1016/0376-4583(81)90088-1Search in Google Scholar

34. Rocca, E., et al. Inhibition treatment of the corrosion of lead artefacts in atmospheric conditions and by acetic acid vapour: use of sodium decanoate. Corrosion Science2004, 46, 653-665.10.1016/S0010-938X(03)00175-6Search in Google Scholar

35. Cano, E.; Lafuente, D. Corrosion inhibitors for the preservation of metallic heritage artefacts. In Corrosion and conservation of cultural heritage metallic artefacts, 1st ed.; Woodhead Publishing Limited: Oxford, 2013, pp 570–594.10.1533/9781782421573.5.570Search in Google Scholar

36. Sankarapapavinasam, S., et al. Hydrazine and substituted hydrazines as corrosion inhibitors for lead in acetic acid. British Corrosion Journal1989, 24 (1), 39-42.10.1179/000705989798270351Search in Google Scholar

37. Chiavari, C.; Martiny, C. Conservation of organ pipes: protective treatments of lead exposed to acetic acid vapours. In Metal 04, Proceedings of the International Conference on Metals Conservation, Canberra, October 4-8, 2004, National Museum of Australia: Canberra, 2004, pp 281-293.Search in Google Scholar

38. Rocca, E.; Steinmetz, J. Inhibition of lead corrosion with saturated linear aliphatic chain monocarboxylates of sodium, Corrosion Science2001, 43, 891-902.Search in Google Scholar

39. Inhibitory koroze kovů. http://ukmki.vscht.cz/files/uzel/0016736/Inhibitory%20koroze%20kov%C5%AF.pdf ? redirected (accessed 11 Jan 2019)Search in Google Scholar

40. Lacouture, F.; Francois, M.; Didierjean, C.; Rivera, J. P.; Rocca, E.; Steinmetz, J. Anhydrous lead(II) heptanoate. Acta Crystallogr.2001, 57, 530–531.Search in Google Scholar

41. Green, L. A re-evaluation of lead conservation techniques at the British museum. International Restorer Seminar, Veszprém, Hungary, July 1-10, 1989.Search in Google Scholar

42. De Keersmacker, M.; De Wael, K.; Adriaens, A.: Influence of the deposition method, temperature and deposition time on the corrosion inhibition of lead dodecanoate coatings deposited on lead surfaces. Journal of Solid State Electrochemistry2013, 17, 1259–1270.Search in Google Scholar

43. Pecenová, Z.; Kouřil, M. Ochrana historického olova proti parám kyseliny octové. Koroze a ochrana materiálu2016, 60(1), 28-34.10.1515/kom-2016-0002Search in Google Scholar

44. Adriens, A.; De Bisshop, F.; et al. Growth and real time corrosion resistance monitoring of lead decanoate coatings. Applied Surface Scince2008, 254, 7351–7355.Search in Google Scholar

45. Kouril, M.; Prosek, T.; Scheffel, B.; Degres, Y. Corrosion monitoring in archives by the electrical resistance technique. Journal of Cultural Heritage2014, 15(2), 99-103.10.1016/j.culher.2013.04.002Search in Google Scholar

46. Kouril, M.; Prosek, T.; Scheffel, B.; Dubois, F. High sensitivity electrical resistance sensors for indoor corrosion monitoring. Corrosion Engineering, Science and Technology2013, 48(4), 282-287.10.1179/1743278212Y.0000000074Search in Google Scholar

47. Prosek, T.; Kouril, M.; Dubus, M.; Taube, M.; Hubert, V.; Scheffel, B.; Degres, Y.; Jouannic, M.; Thierry, D. Real-time monitoring of indoor air corrosivity in cultural heritage institutions with metallic electrical resistance sensors. Studies in Conservation2013, 58(2), 117-128.10.1179/2047058412Y.0000000080Search in Google Scholar

eISSN:
1804-1213
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Industrial Chemistry, Chemical Engineering, Materials Sciences, Ceramics and Glass