1. bookVolume 28 (2022): Edizione 3 (June 2022)
Conferenza Dettagli
License
Formato
Conferenza
eISSN
2451-3113
Prima pubblicazione
15 Dec 2015
Frequenza di pubblicazione
3 volte all'anno
Lingue
Inglese
Accesso libero

Emerging Technologies and Solutions for Chemical Warfare Agents Decontamination

Pubblicato online: 06 Jul 2022
Volume & Edizione: Volume 28 (2022) - Edizione 3 (June 2022)
Pagine: 39 - 43
Conferenza Dettagli
License
Formato
Conferenza
eISSN
2451-3113
Prima pubblicazione
15 Dec 2015
Frequenza di pubblicazione
3 volte all'anno
Lingue
Inglese

[1] Jabbour C. R., Parker L. A., Hutter E. M. and Weckhuysen B. M. Chemical targets to deactivate biological and chemical toxins using surfaces and fabrics, Nature Reviews Chemistry, vol. 5, no. 6, pp. 370-387, 2021/06/01 2021, doi: 10.1038/s41570-021-00275-4.809767733969223 Apri DOISearch in Google Scholar

[2] Ginghina R. E. et al., Reactive Organic Suspensions Comprising ZnO, TiO2, and Zeolite Nanosized Adsorbents: Evaluation of Decontamination Efficiency on Soman and Sulfur Mustard, Toxics, vol. 9, no. 12, 2021, doi: 10.3390/toxics9120334.870796834941768 Apri DOISearch in Google Scholar

[3] Kumar V., Goel R., Chawla R., Silambarasan M. and Sharma R. K. Chemical, biological, radiological, and nuclear decontamination: Recent trends and future perspective, (in eng), J Pharm Bioallied Sci, vol. 2, no. 3, pp. 220-238, 2010, doi: 10.4103/0975-7406.68505.314862721829318 Apri DOISearch in Google Scholar

[4] Almeida C. C., Garcia, R.H.L., Cambises, P.B.S., Da Silva, T.M., Paiva, J.E., Carneiro, J.C.G.G., Rodrigues, D.L. Radiation protection procedures for the dismantling and decontamination of nuclear facility, presented at the Int. Nucl. Atl. Conf, 2013. Search in Google Scholar

[5] Bossart S., Blair, D.M., Decontamination technologies for facility reuse, presented at the WM‘03 Conf. 2003, Tucson, AZ, 2003. Search in Google Scholar

[6] Kohli R. Chapter 1 – removal of surface contaminants using ionic liquids, in Dev. Surf. Contam. Clean. Methods Clean. Cleanliness Verif. : Elsevier, 2013, pp. 1-63.10.1016/B978-1-4377-7879-3.00001-7 Search in Google Scholar

[7] Sutton M., Burastero, S.R., Perkins, J., Chiarappa-Zucca, M.L., Andresen, B.D., Alpha-aminobenzyl-alpha, alpha, -diphosphoric acid selective chelation of beryllium, 2007. Search in Google Scholar

[8] Sutton S. Trending in the Environmental Monitoring Program, American Pharmaceutical Review, 2015. Search in Google Scholar

[9] Gray H. N. and Bergbreiter D. E. Applications of polymeric smart materials to environmental problems, (in eng), no. 0091-6765 (Print). Search in Google Scholar

[10] Gray H. N., Jorgensen B., McClaugherty D. L. and Kippenberger A. Smart Polymeric Coatings for Surface Decontamination, Industrial & Engineering Chemistry Research, vol. 40, no. 16, pp. 3540-3546, 2001/08/01 2001, doi: 10.1021/ie010034v. Apri DOISearch in Google Scholar

[11] Toader G. et al. Polymeric Blends Designed for Surface Decontamination, U.P.B. Sci. Bull., Series B, vol. 83, no. 3, pp. 73 - 86, 2021. Search in Google Scholar

[12] Toader G., Stănescu P.-O., Zecheru T., Rotariu T., El-Ghayoury A., and Teodorescu M. Water-based strippable coatings containing bentonite clay for heavy metal surface decontamination, Arabian Journal of Chemistry, vol. 12, no. 8, pp. 4026-4034, 2019/12/01/2019, doi: https://doi.org/10.1016/j.arabjc.2016.03.009. Search in Google Scholar

[13] Toader G. et al. Biodegradable film-forming polymeric nanocomposites designed for surface decontamination and procedure for synthesis and utilization, Patent Appl. A00340 / 16.06.2021, 2021. Search in Google Scholar

[14] Alswat A. A., Ahmad M. B., Saleh T. A., Hussein M. Z. B. and Ibrahim N. A. Effect of zinc oxide amounts on the properties and antibacterial activities of zeolite/zinc oxide nanocomposite, Mater Sci Eng C Mater Biol Appl, vol. 68, pp. 505-511, Nov 1 2016, doi: 10.1016/j.msec.2016.06.028.27524047 Apri DOISearch in Google Scholar

[15] Carol López de Dicastillo M. G. C., Fernanda B. Martínez, Camilo Streitt and Galotto M. J. Antimicrobial Effect of Titanium Dioxide Nanoparticles, Antimicrobial Resistance - A One Health Perspective, IntechOpen, 2020.10.5772/intechopen.90891 Search in Google Scholar

[16] Elodie D., Maria Betzabeth E.-B., Isabelle P., Thierry P. and Didier B. Metal oxide nanoparticles for the decontamination of toxic chemical and biological compounds, International Journal of Pharmaceutics, Elsevier, vol. 583, p. 119373, 2020. Search in Google Scholar

[17] Kim K., Tsay O. G., Atwood D. A. and Churchill D. G. Destruction and detection of chemical warfare agents, Chem Rev, vol. 111, no. 9, pp. 5345-403, Sep 14 2011, doi: 10.1021/cr100193y.21667946 Apri DOISearch in Google Scholar

Articoli consigliati da Trend MD