1. bookVolumen 28 (2022): Heft 3 (June 2022)
Konferenz Details
License
Format
Konferenz
eISSN
2451-3113
Erstveröffentlichung
15 Dec 2015
Erscheinungsweise
3 Hefte pro Jahr
Sprachen
Englisch
Uneingeschränkter Zugang

Emerging Technologies and Solutions for Chemical Warfare Agents Decontamination

Online veröffentlicht: 06 Jul 2022
Volumen & Heft: Volumen 28 (2022) - Heft 3 (June 2022)
Seitenbereich: 39 - 43
Konferenz Details
License
Format
Konferenz
eISSN
2451-3113
Erstveröffentlichung
15 Dec 2015
Erscheinungsweise
3 Hefte pro Jahr
Sprachen
Englisch
Abstract

HILP (High Impact, Low Probability) occurrences include CBRNE incidents (induced by terrorist acts or accidents). Nevertheless, since the probability of encountering chemical warfare threats increased in the actual global context, this work aims to highlight the most recent results obtained for the neutralization and removal of chemical warfare agents, by employing various types of nanoparticles and decontamination solutions. The performances of the decontamination solutions were evaluated by using GC-MS technique, which allows the quantification of the initial concentration of toxic agent, as well as the concentration of the remnant toxic agent, measured at various time intervals, until decontamination process was completed.

[1] Jabbour C. R., Parker L. A., Hutter E. M. and Weckhuysen B. M. Chemical targets to deactivate biological and chemical toxins using surfaces and fabrics, Nature Reviews Chemistry, vol. 5, no. 6, pp. 370-387, 2021/06/01 2021, doi: 10.1038/s41570-021-00275-4.809767733969223 DOI öffnenSearch in Google Scholar

[2] Ginghina R. E. et al., Reactive Organic Suspensions Comprising ZnO, TiO2, and Zeolite Nanosized Adsorbents: Evaluation of Decontamination Efficiency on Soman and Sulfur Mustard, Toxics, vol. 9, no. 12, 2021, doi: 10.3390/toxics9120334.870796834941768 DOI öffnenSearch in Google Scholar

[3] Kumar V., Goel R., Chawla R., Silambarasan M. and Sharma R. K. Chemical, biological, radiological, and nuclear decontamination: Recent trends and future perspective, (in eng), J Pharm Bioallied Sci, vol. 2, no. 3, pp. 220-238, 2010, doi: 10.4103/0975-7406.68505.314862721829318 DOI öffnenSearch in Google Scholar

[4] Almeida C. C., Garcia, R.H.L., Cambises, P.B.S., Da Silva, T.M., Paiva, J.E., Carneiro, J.C.G.G., Rodrigues, D.L. Radiation protection procedures for the dismantling and decontamination of nuclear facility, presented at the Int. Nucl. Atl. Conf, 2013. Search in Google Scholar

[5] Bossart S., Blair, D.M., Decontamination technologies for facility reuse, presented at the WM‘03 Conf. 2003, Tucson, AZ, 2003. Search in Google Scholar

[6] Kohli R. Chapter 1 – removal of surface contaminants using ionic liquids, in Dev. Surf. Contam. Clean. Methods Clean. Cleanliness Verif. : Elsevier, 2013, pp. 1-63. Search in Google Scholar

[7] Sutton M., Burastero, S.R., Perkins, J., Chiarappa-Zucca, M.L., Andresen, B.D., Alpha-aminobenzyl-alpha, alpha, -diphosphoric acid selective chelation of beryllium, 2007. Search in Google Scholar

[8] Sutton S. Trending in the Environmental Monitoring Program, American Pharmaceutical Review, 2015. Search in Google Scholar

[9] Gray H. N. and Bergbreiter D. E. Applications of polymeric smart materials to environmental problems, (in eng), no. 0091-6765 (Print). Search in Google Scholar

[10] Gray H. N., Jorgensen B., McClaugherty D. L. and Kippenberger A. Smart Polymeric Coatings for Surface Decontamination, Industrial & Engineering Chemistry Research, vol. 40, no. 16, pp. 3540-3546, 2001/08/01 2001, doi: 10.1021/ie010034v. DOI öffnenSearch in Google Scholar

[11] Toader G. et al. Polymeric Blends Designed for Surface Decontamination, U.P.B. Sci. Bull., Series B, vol. 83, no. 3, pp. 73 - 86, 2021. Search in Google Scholar

[12] Toader G., Stănescu P.-O., Zecheru T., Rotariu T., El-Ghayoury A., and Teodorescu M. Water-based strippable coatings containing bentonite clay for heavy metal surface decontamination, Arabian Journal of Chemistry, vol. 12, no. 8, pp. 4026-4034, 2019/12/01/2019, doi: https://doi.org/10.1016/j.arabjc.2016.03.009. Search in Google Scholar

[13] Toader G. et al. Biodegradable film-forming polymeric nanocomposites designed for surface decontamination and procedure for synthesis and utilization, Patent Appl. A00340 / 16.06.2021, 2021. Search in Google Scholar

[14] Alswat A. A., Ahmad M. B., Saleh T. A., Hussein M. Z. B. and Ibrahim N. A. Effect of zinc oxide amounts on the properties and antibacterial activities of zeolite/zinc oxide nanocomposite, Mater Sci Eng C Mater Biol Appl, vol. 68, pp. 505-511, Nov 1 2016, doi: 10.1016/j.msec.2016.06.028.27524047 DOI öffnenSearch in Google Scholar

[15] Carol López de Dicastillo M. G. C., Fernanda B. Martínez, Camilo Streitt and Galotto M. J. Antimicrobial Effect of Titanium Dioxide Nanoparticles, Antimicrobial Resistance - A One Health Perspective, IntechOpen, 2020. Search in Google Scholar

[16] Elodie D., Maria Betzabeth E.-B., Isabelle P., Thierry P. and Didier B. Metal oxide nanoparticles for the decontamination of toxic chemical and biological compounds, International Journal of Pharmaceutics, Elsevier, vol. 583, p. 119373, 2020. Search in Google Scholar

[17] Kim K., Tsay O. G., Atwood D. A. and Churchill D. G. Destruction and detection of chemical warfare agents, Chem Rev, vol. 111, no. 9, pp. 5345-403, Sep 14 2011, doi: 10.1021/cr100193y.21667946 DOI öffnenSearch in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo