Dairy cow mastitis is a disease that is common on more than one continent and causes a decline in milk production and quality, leading to significant economic losses in the dairy industry (36).
Antimicrobial-resistant bacteria often harbour antibiotic resistance genes, which is proven to be a driving factor in drug resistance (39). These bacteria can spread among different hosts, which transduce antibiotic resistance genes to strains which may in some cases already possess certain drug resistance, leading to the emergence of multi-drug-resistant (MDR) bacteria (35).
As a clonally structured population,
Primer sequences, product sizes, annealing temperature and references used for the PCR in the study
Gene | Primer sequence (5′–3′) | Product size (bp) | Annealing temperature (℃) | Reference or GenBank accession no. |
---|---|---|---|---|
ATAAAATTCTTGAAGACGAAA GACAGTTACCAATGCTTAATC | 643 | 53 | (25) | |
TTTGTCGCTTCTTTACTCGCCTTTA GCCAGATCCATTTCTATCATGCCTA | 198 | 56 | DQ247972 | |
TCAACTTTCAAGATCGCA GTGTGTTTAGAATGGTGA | 591 | 53 | (25) | |
ACTGTGATGGGATACGCGTC CTCCGTCAGCGTTTCAGCTA | 482 | 54 | (26) | |
CTTCAGGATGGCAAGTTGGT TCATCTCGTTCTCCGCTCAT | 286 | 55 | (26) | |
CTGGAGGTCACTGTCGTGC CCGTGGATTGCCAAAGGTC | 274 | 55 | X68089 | |
AAAACTTACCCGCCATACCA TTTGGCGTGTTTCATTGCTT | 126 | 53 | MN461246 | |
GCTCGTGTCATTTCTGGGAGT AGCCTAGCAGCCATTTCTATC | 375 | 53 | GQ483470 | |
CGGAGCAGAAACAAGAAAGCG GGATCAGGACCGGATACACCAT | 345 | 57 | (26) | |
CATTAATAGGCGCATCGCTG TGAAGGTCATCGATAGCAGG | 391 | 53 | (26) | |
GCCTGGAACTGCTGCTGATGC TCGCCTGCCAAACCGAACTCT | 314 | 59 | (27) | |
GCGCTCAAGGCAGATGGCATT GCGTTTGATACCGGCACCCGT | 793 | 57 | (27) | |
GATCGTGAAAGCCAGAAAGG ACGATGCCTGGTAGTTGTCC | 513 | 55 | (25) | |
ATTCTGCTTGGCGCTCCGGG CCGTCAACTTTCGCGTATTT | 583 | 54 | (20) | |
TCACAGGTCGCCAGCGCTTC GTACGCAGCGAAAAAGATTC | 806 | 54 | (20) | |
TCGGCGACACGGATGACGGC ATCAGGCCTTCACGCGCATC | 911 | 60 | (20) | |
ATGGAAAGTAAAGTAGTTGTTCCGGCACA GGACGCAGCAGGATCTGTT | 878 | 54 | (20) | |
ATGAAAGTCGCAGTCCTCGGCGCTGCTGGCGG TTAACGAACTCCTGCCCCAGAGCGATATCTTTCTT | 932 | 60 | (20) | |
CGCGCTGATGAAAGAGATGA CATACGGTAAGCCACGCAGA | 816 | 54 | (20) | |
CGCATTCGCTTTACCCTGACC TCGTCGAAATCTACGGACCGGA | 780 | 58 | (20) |
Susceptibility of 40
Antibiotic | Distribution of |
Decision criteria/Diameter of inhibitory zone (mm) | ||||
---|---|---|---|---|---|---|
R1 | I | S | R | I | S | |
Ampicillin | 21/52.5% | 6/15.0% | 13/32.5% | ≤13 | 14–16 | ≥17 |
Amoxicillin | 18/45.0% | 3/7.5% | 19/47.5% | ≤13 | 14–17 | ≥18 |
Ceftriaxone | 19/47.5% | 1/2.5% | 20/50.0% | ≤19 | 20–23 | ≥24 |
Cefazolin | 31/77.5% | 8/20.0% | 1/2.5% | ≤19 | 20–22 | ≥23 |
Gentamicin | 13/32.5% | 0 | 27/67.5% | ≤12 | 13–14 | ≥15 |
Streptomycin | 12/30.0% | 5/12.5% | 23/57.5% | ≤11 | 12–14 | ≥15 |
Neomycin | 1/2.5% | 15/37.5% | 24/60.0% | ≤11 | 12–16 | ≥17 |
Amikacin | 1/2.5% | 1/2.5% | 38/95.0% | ≤14 | 15–16 | ≥17 |
Erythromycin | 17/42.5% | 21/52.5% | 2/5.0% | ≤13 | 14–22 | ≥23 |
Doxycycline | 14/35.0% | 5/12.5% | 21/52.5% | ≤10 | 11–13 | ≥14 |
Trimethoprim- sulfamethoxazole | 22/55.0% | 0 | 18/45.0% | ≤12 | 13–16 | ≥17 |
Ciprofloxacin | 7/17.5% | 0 | 33/82.5% | ≤15 | 16–20 | ≥21 |
Enrofloxacin | 6/5.0% | 11/27.5% | 23/57.5% | ≤15 | 16–23 | ≥24 |
R – resistant; I – intermediate; S – susceptible
Sequence types, resistance phenotypes and resistance genes in 40
ID | Location | MLST | Resistance phenotypes | Resistance genes |
---|---|---|---|---|
1 | Xushui | ST10 | AMP-AMX-CRO-CFZ-GEN-STR-EM-DOX-SXT-ENR | |
2 | Xushui | ST10 | AMP-AMX-CRO-CFZ-GEN-STR-NER-EM-DOX-SXT-CIP-ENR | |
3 | Xushui | ST359 | AMP-AMX-CRO-CFZ-GEN-STR-NER-EM-DOX-SXT-CIP-ENR | |
4 | Xushui | ST10 | CFZ-EM | |
5 | Xushui | ST10 | AMP-AMX-CRO-CFZ-STR-NER-EM-DOX-SXT-CIP-ENR | |
6 | Xushui | ST1585 | AMP-AMX-CRO-CFZ-GEN-STR-NER-EM-DOX-SXT-CIP-ENR | |
7 | Xushui | ST359 | AMP-AMX-CRO-CFZ-GEN-STR-NER-AMI-EM-DOX-SXT-CIP-ENR | |
8 | Xushui | ST359 | AMP-AMX-CRO-CFZ-GEN-NER-EM-DOX-SXT-ENR | |
9 | Xushui | ST359 | AMP-AMX-CRO-CFZ-GEN-STR-EM-DOX-SXT-CIP-ENR | |
10 | Xushui | ST10 | CFZ-EM | |
11 | Xushui | ST10 | CFZ-EM | |
12 | Xushui | ST359 | AMP-AMX-CRO-CFZ-GEN-NER-EM-SXT-ENR | |
13 | Xushui | ST1125 | AMP-AMX-CRO-CFZ-STR-SXT | |
14 | Xushui | ST1585 | AMP-AMX-CRO-CFZ-EM-DOX-SXT-ENR | |
15 | Xushui | ST327 | AMP-AMX-CRO-CFZ-EM-DOX-ENR | |
16 | Xushui | ST937 | AMP-AMX-CRO-CFZ-STR-EM-SXT-ENR | |
17 | Qingyuan | ST10717 | AMP-CFZ-STR-NER-EM-DOX-SXT | |
18 | Qingyuan | ST942 | CFZ-NER-EM-DOX | |
19 | Qingyuan | ST446 | AMP-CFZ-GEN-STR-NER-EM-DOX-SXT | |
20 | Qingyuan | ST1310 | AMP-AMX-CRO-CFZ-GEN-STR-NER-AMI-EM | |
21 | Qingyuan | ST515 | AMP-AMX-CRO-CFZ-STR-EM-DOX-SXT-ENR | |
22 | Qingyuan | ST48 | AMP-CFZ-NER-EM | |
23 | Qingyuan | ST10 | CFZ-NER-EM | |
24 | Quyang | ST1252 | AMP-AMX-CRO-CFZ-STR-EM-SXT-ENR | |
25 | Quyang | ST1079 | AMP-CFZ-EM | |
26 | Quyang | ST154 | CFZ | |
27 | Quyang | ST1585 | AMP-AMX-CRO-CFZ-GEN-STR-NER-EM-DOX-SXT-CIP-ENR | |
28 | Quyang | ST1167 | AMP-AMX-CRO-CFZ-STR-NER-EM-DOX-SXT | |
29 | Mancheng | ST1610 | AMP-CFZ-EM | |
30 | Mancheng | ST10 | NER-EM | |
31 | Mancheng | ST2741 | CFZ-EM | |
32 | Mancheng | ST2741 | CFZ-EM | |
33 | Mancheng | ST48 | AMP-CFZ-GEN-STR-EM-DOX-SXT-ENR | |
34 | Mancheng | ST10 | AMP-AMX-CRO-CFZ-EM-DOX-SXT-ENR | |
35 | Mancheng | ST906 | AMP-AMX-CRO-CFZ-EM-SXT | |
36 | Mancheng | ST48 | CFZ-EM | |
37 | Mancheng | ST48 | CFZ-EM | |
38 | Mancheng | ST48 | CFZ-EM | |
39 | Mancheng | ST906 | CFZ-EM | |
40 | Mancheng | ST48 | AMP-AMX-CFZ-GEN-EM-DOX-SXT |
AMP – ampicillin; AMX – amoxicillin; CRO – ceftriaxone; CFZ – cefazolin; GEN – gentamicin; STR – streptomycin; NER – neomycin; AMI – amikacin; EM – erythromycin; DOX – doxycycline; SXT – trimethoprim-sulfamethoxazole; CIP – ciprofloxacin; ENR – enrofloxacin
Pearson’s correlation coefficients (r) of resistance genes and corresponding antibiotics
Resistance gene | Antimicrobials |
||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AMP | AMX | CRO | CFZ | GEN | STR | NER | AMI | EM | DOX | SXT | CIP | ENR | |
0.231 | 0.317 | 0.333 | 0.053 | - | - | - | - | - | - | - | - | - | |
−0.114 | 0.248 | 0.124 | −0.059 | - | - | - | - | - | - | - | - | - | |
- | - | - | - | −0.27 3 | −0.12 5 | −0.083 | 0.035 | - | - | - | - | - | |
- | - | - | - | 0.331 | 0.035 | 0.281 | −0.053 | - | - | - | - | - | |
- | - | - | - | 0.427 | 0.353 | 0.105 | −0.059 | - | - | - | - | - | |
- | - | - | - | - | - | - | - | −0.04 7 | - | - | - | - | |
- | - | - | - | - | - | - | - | - | −0.156 | - | - | - | |
- | - | - | - | - | - | - | - | - | −0.347 | - | - | - | |
- | - | - | - | - | - | - | - | - | - | - 0.174 | - | - | |
- | - | - | - | - | - | - | - | - | - | - 0.343 | - | - | |
- | - | - | - | - | - | - | - | - | - | - | −0.106 | 0.035 |
AMP – ampicillin; AMX – amoxicillin; CRO – ceftriaxone; CFZ– cefazolin; GEN– gentamicin; STR – streptomycin; NER – neomycin;
AMI – amikacin; EM – erythromycin; DOX – doxycycline; SXT – trimethoprim-sulfamethoxazole; CIP – ciprofloxacin; ENR – enrofloxacin Pearson’s correlation coefficients (r) shown in bold are significant at P < 0.05
A positive r indicates a positive association between the two variables, whereas a negative r indicates a negative association
- represents antimicrobials without corresponding antibiotic resistance genes
Fig. 1
Full minimum spanning tree using the goeBURST algorithm (n = 40). Each square represents a single sequence type (ST), and the circumference is proportional to the number of isolates within each ST. Grey regions represent a clonal complex. The numbers above the lines (1–5) represent the number of different alleles between the two ST types. The major nodes are indicated by in olive green

The evolutionary tree demonstrated a close genetic relationship between strains in the same clonal complex, such as CC154 (purple area, Fig. 2) and CC446 (yellow area, Fig. 2). The strains in CC10 (blue area, Fig. 2) were distributed in different clusters of the evolutionary tree, while ST48 strains were more distantly related to ST10 and ST1585 strains (Fig. 2). By antimicrobial resistance analysis, it was shown that there were differences in drug resistance profile and gene carriage in the same ST or CC strains. For example, two
Fig. 2
Molecular phylogenetic and antimicrobial resistance analysis of 40

In this study, the isolation rate of
There are many mechanisms of antimicrobial resistance in bacteria. In most cases, the presence of antimicrobial resistance genes strongly correlated with resistant phenotypes (3, 22), and a genetic origin aggravates the problem of antimicrobial resistance (21) because antimicrobial resistance genes can be transmitted both vertically and horizontally by plasmid, transposon and integrator in bacterial populations. This study found that more than half of the isolates carried the
Multilocus sequence typing is a robust and reproducible method for analysing genetic relationships in population genetics and is frequently used in molecular epidemiological investigations (29). In this experiment, 40
In conclusion, the present study elucidated the molecular characteristics of antimicrobial resistance and genetic correlations of
Fig. 1

Fig. 2

Pearson’s correlation coefficients (r) of resistance genes and corresponding antibiotics
Resistance gene | Antimicrobials |
||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AMP | AMX | CRO | CFZ | GEN | STR | NER | AMI | EM | DOX | SXT | CIP | ENR | |
0.231 | 0.317 | 0.333 | 0.053 | - | - | - | - | - | - | - | - | - | |
−0.114 | 0.248 | 0.124 | −0.059 | - | - | - | - | - | - | - | - | - | |
- | - | - | - | −0.27 3 | −0.12 5 | −0.083 | 0.035 | - | - | - | - | - | |
- | - | - | - | 0.331 | 0.035 | 0.281 | −0.053 | - | - | - | - | - | |
- | - | - | - | 0.427 | 0.353 | 0.105 | −0.059 | - | - | - | - | - | |
- | - | - | - | - | - | - | - | −0.04 7 | - | - | - | - | |
- | - | - | - | - | - | - | - | - | −0.156 | - | - | - | |
- | - | - | - | - | - | - | - | - | −0.347 | - | - | - | |
- | - | - | - | - | - | - | - | - | - | - 0.174 | - | - | |
- | - | - | - | - | - | - | - | - | - | - 0.343 | - | - | |
- | - | - | - | - | - | - | - | - | - | - | −0.106 | 0.035 |
Susceptibility of 40 E. coli strains to 13 antibiotics commonly used in China
Antibiotic | Distribution of |
Decision criteria/Diameter of inhibitory zone (mm) | ||||
---|---|---|---|---|---|---|
R1 | I | S | R | I | S | |
Ampicillin | 21/52.5% | 6/15.0% | 13/32.5% | ≤13 | 14–16 | ≥17 |
Amoxicillin | 18/45.0% | 3/7.5% | 19/47.5% | ≤13 | 14–17 | ≥18 |
Ceftriaxone | 19/47.5% | 1/2.5% | 20/50.0% | ≤19 | 20–23 | ≥24 |
Cefazolin | 31/77.5% | 8/20.0% | 1/2.5% | ≤19 | 20–22 | ≥23 |
Gentamicin | 13/32.5% | 0 | 27/67.5% | ≤12 | 13–14 | ≥15 |
Streptomycin | 12/30.0% | 5/12.5% | 23/57.5% | ≤11 | 12–14 | ≥15 |
Neomycin | 1/2.5% | 15/37.5% | 24/60.0% | ≤11 | 12–16 | ≥17 |
Amikacin | 1/2.5% | 1/2.5% | 38/95.0% | ≤14 | 15–16 | ≥17 |
Erythromycin | 17/42.5% | 21/52.5% | 2/5.0% | ≤13 | 14–22 | ≥23 |
Doxycycline | 14/35.0% | 5/12.5% | 21/52.5% | ≤10 | 11–13 | ≥14 |
Trimethoprim- sulfamethoxazole | 22/55.0% | 0 | 18/45.0% | ≤12 | 13–16 | ≥17 |
Ciprofloxacin | 7/17.5% | 0 | 33/82.5% | ≤15 | 16–20 | ≥21 |
Enrofloxacin | 6/5.0% | 11/27.5% | 23/57.5% | ≤15 | 16–23 | ≥24 |
Primer sequences, product sizes, annealing temperature and references used for the PCR in the study
Gene | Primer sequence (5′–3′) | Product size (bp) | Annealing temperature (℃) | Reference or GenBank accession no. |
---|---|---|---|---|
ATAAAATTCTTGAAGACGAAA GACAGTTACCAATGCTTAATC | 643 | 53 | ( |
|
TTTGTCGCTTCTTTACTCGCCTTTA GCCAGATCCATTTCTATCATGCCTA | 198 | 56 | DQ247972 | |
TCAACTTTCAAGATCGCA GTGTGTTTAGAATGGTGA | 591 | 53 | ( |
|
ACTGTGATGGGATACGCGTC CTCCGTCAGCGTTTCAGCTA | 482 | 54 | ( |
|
CTTCAGGATGGCAAGTTGGT TCATCTCGTTCTCCGCTCAT | 286 | 55 | ( |
|
CTGGAGGTCACTGTCGTGC CCGTGGATTGCCAAAGGTC | 274 | 55 | X68089 | |
AAAACTTACCCGCCATACCA TTTGGCGTGTTTCATTGCTT | 126 | 53 | MN461246 | |
GCTCGTGTCATTTCTGGGAGT AGCCTAGCAGCCATTTCTATC | 375 | 53 | GQ483470 | |
CGGAGCAGAAACAAGAAAGCG GGATCAGGACCGGATACACCAT | 345 | 57 | ( |
|
CATTAATAGGCGCATCGCTG TGAAGGTCATCGATAGCAGG | 391 | 53 | ( |
|
GCCTGGAACTGCTGCTGATGC TCGCCTGCCAAACCGAACTCT | 314 | 59 | ( |
|
GCGCTCAAGGCAGATGGCATT GCGTTTGATACCGGCACCCGT | 793 | 57 | ( |
|
GATCGTGAAAGCCAGAAAGG ACGATGCCTGGTAGTTGTCC | 513 | 55 | ( |
|
ATTCTGCTTGGCGCTCCGGG CCGTCAACTTTCGCGTATTT | 583 | 54 | ( |
|
TCACAGGTCGCCAGCGCTTC GTACGCAGCGAAAAAGATTC | 806 | 54 | ( |
|
TCGGCGACACGGATGACGGC ATCAGGCCTTCACGCGCATC | 911 | 60 | ( |
|
ATGGAAAGTAAAGTAGTTGTTCCGGCACA GGACGCAGCAGGATCTGTT | 878 | 54 | ( |
|
ATGAAAGTCGCAGTCCTCGGCGCTGCTGGCGG TTAACGAACTCCTGCCCCAGAGCGATATCTTTCTT | 932 | 60 | ( |
|
CGCGCTGATGAAAGAGATGA CATACGGTAAGCCACGCAGA | 816 | 54 | ( |
|
CGCATTCGCTTTACCCTGACC TCGTCGAAATCTACGGACCGGA | 780 | 58 | ( |
Sequence types, resistance phenotypes and resistance genes in 40 E. coli strains
ID | Location | MLST | Resistance phenotypes | Resistance genes |
---|---|---|---|---|
1 | Xushui | ST10 | AMP-AMX-CRO-CFZ-GEN-STR-EM-DOX-SXT-ENR | |
2 | Xushui | ST10 | AMP-AMX-CRO-CFZ-GEN-STR-NER-EM-DOX-SXT-CIP-ENR | |
3 | Xushui | ST359 | AMP-AMX-CRO-CFZ-GEN-STR-NER-EM-DOX-SXT-CIP-ENR | |
4 | Xushui | ST10 | CFZ-EM | |
5 | Xushui | ST10 | AMP-AMX-CRO-CFZ-STR-NER-EM-DOX-SXT-CIP-ENR | |
6 | Xushui | ST1585 | AMP-AMX-CRO-CFZ-GEN-STR-NER-EM-DOX-SXT-CIP-ENR | |
7 | Xushui | ST359 | AMP-AMX-CRO-CFZ-GEN-STR-NER-AMI-EM-DOX-SXT-CIP-ENR | |
8 | Xushui | ST359 | AMP-AMX-CRO-CFZ-GEN-NER-EM-DOX-SXT-ENR | |
9 | Xushui | ST359 | AMP-AMX-CRO-CFZ-GEN-STR-EM-DOX-SXT-CIP-ENR | |
10 | Xushui | ST10 | CFZ-EM | |
11 | Xushui | ST10 | CFZ-EM | |
12 | Xushui | ST359 | AMP-AMX-CRO-CFZ-GEN-NER-EM-SXT-ENR | |
13 | Xushui | ST1125 | AMP-AMX-CRO-CFZ-STR-SXT | |
14 | Xushui | ST1585 | AMP-AMX-CRO-CFZ-EM-DOX-SXT-ENR | |
15 | Xushui | ST327 | AMP-AMX-CRO-CFZ-EM-DOX-ENR | |
16 | Xushui | ST937 | AMP-AMX-CRO-CFZ-STR-EM-SXT-ENR | |
17 | Qingyuan | ST10717 | AMP-CFZ-STR-NER-EM-DOX-SXT | |
18 | Qingyuan | ST942 | CFZ-NER-EM-DOX | |
19 | Qingyuan | ST446 | AMP-CFZ-GEN-STR-NER-EM-DOX-SXT | |
20 | Qingyuan | ST1310 | AMP-AMX-CRO-CFZ-GEN-STR-NER-AMI-EM | |
21 | Qingyuan | ST515 | AMP-AMX-CRO-CFZ-STR-EM-DOX-SXT-ENR | |
22 | Qingyuan | ST48 | AMP-CFZ-NER-EM | |
23 | Qingyuan | ST10 | CFZ-NER-EM | |
24 | Quyang | ST1252 | AMP-AMX-CRO-CFZ-STR-EM-SXT-ENR | |
25 | Quyang | ST1079 | AMP-CFZ-EM | |
26 | Quyang | ST154 | CFZ | |
27 | Quyang | ST1585 | AMP-AMX-CRO-CFZ-GEN-STR-NER-EM-DOX-SXT-CIP-ENR | |
28 | Quyang | ST1167 | AMP-AMX-CRO-CFZ-STR-NER-EM-DOX-SXT | |
29 | Mancheng | ST1610 | AMP-CFZ-EM | |
30 | Mancheng | ST10 | NER-EM | |
31 | Mancheng | ST2741 | CFZ-EM | |
32 | Mancheng | ST2741 | CFZ-EM | |
33 | Mancheng | ST48 | AMP-CFZ-GEN-STR-EM-DOX-SXT-ENR | |
34 | Mancheng | ST10 | AMP-AMX-CRO-CFZ-EM-DOX-SXT-ENR | |
35 | Mancheng | ST906 | AMP-AMX-CRO-CFZ-EM-SXT | |
36 | Mancheng | ST48 | CFZ-EM | |
37 | Mancheng | ST48 | CFZ-EM | |
38 | Mancheng | ST48 | CFZ-EM | |
39 | Mancheng | ST906 | CFZ-EM | |
40 | Mancheng | ST48 | AMP-AMX-CFZ-GEN-EM-DOX-SXT |