1. bookVolume 38 (2022): Edizione 2 (June 2022)
Dettagli della rivista
License
Formato
Rivista
eISSN
2001-7367
Prima pubblicazione
01 Oct 2013
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese
access type Accesso libero

Total Process Error: An Approach for Assessing and Monitoring the Quality of Multisource Processes

Pubblicato online: 14 Jun 2022
Volume & Edizione: Volume 38 (2022) - Edizione 2 (June 2022)
Pagine: 533 - 556
Ricevuto: 01 Feb 2020
Accettato: 01 Aug 2021
Dettagli della rivista
License
Formato
Rivista
eISSN
2001-7367
Prima pubblicazione
01 Oct 2013
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese
Abstract

Most National Statistical Institutes are progressively moving from traditional production models to new strategies based on the combined use of different sources of information, which can be both primary and secondary. In this article, we propose a framework for assessing the quality of multisource processes, such as statistical registers.

The final aim is to develop a tool supporting decisions about the process design and its monitoring, and to provide quality measures of the whole production. The starting point is the adaptation of the life-cycle paradigm, that results in a three-phases framework described in recent literature. An evolution of this model is proposed, focusing on the first two phases of the life-cycle, to better represent the source integration/combination phase, that can vary accordingly to the features of different types of processes.

The proposed enhancement would improve the existing quality framework to support the evaluation of different multisource processes. An application of the proposed framework to two Istat (Italian national statistical institute) registers in the economic area taken as case studies is presented. These experiences show the potentials of such tool in supporting National Statistical Institutes in assessing multisource statistical production processes.

Keywords

Alleva, G., P.D. Falorsi, F. Petrarca, F. and P. Righi. 2021. “Measuring the Accuracy of Aggregates Computed from a Statistical Register.” Journal of Official Statistics. DOI: https://doi.org/10.2478/jos-2021-0021.10.2478/jos-2021-0021 Search in Google Scholar

Biemer, P.P. 2010. Total Survey Error, Design, implementation and evaluation. Public Opinion Quarterly, 74 (5): 817–848. DOI: https://doi.org/10.1093/poq/nfq058.10.1093/poq/nfq058 Search in Google Scholar

De Waal, T., A. van Delden, and S. Scholtus. 2020. Multi-source Statistics: Basic Situations and Methods. International Statistical Review 88: 203–228. DOI: https://doi.org/10.1111/insr.12352.10.1111/insr.12352 Search in Google Scholar

Di Zio, M., L.C. Zhang, and T. de Waal. 2017. “Statistical methods for combining multiple sources of administrative and survey data.” The Survey Statistician 76: 17–26. Available at: http://isi-iass.org/home/wp-content/uploads/Survey_Statistician_July_20171.pdf (accessed March 2022). Search in Google Scholar

Di Zio, M., U. Guarnera, and R. Varriale. 2016. “Estimation of the main variables of the economic account of small and medium enterprises based on administrative sources”. Rivista di Statistica Ufficiale. N.1/2016. Available at: https://www.istat.it/it/files//2016/11/4_guarnera.pdf (accessed March 2022). Search in Google Scholar

Eurostat. 2014. Memobust Handbook on Methodology of Modern Business Statistics. Available at: https://ec.europa.eu/eurostat/cros/content/handbook-methodology-modern-business-statistics_en (accessed March 2022). Search in Google Scholar

Groves, R.M., and L.E. Lyberg. 2010. Total Survey Error: Past, Present, and Future. Public Opinion Quarterly, 74 (5): 849–879. DOI: https://doi.org/10.1093/poq/nfq065.10.1093/poq/nfq065 Search in Google Scholar

Lothian, J., A. Holmberg, and A. Seyb. 2019. An Evolutionary Schema for Using “it-is-what-it-is”. Journal of Official Statistics, 35 (1): 137–165. DOI: https://doi.org/10.2478/jos-2019-0007.10.2478/jos-2019-0007 Search in Google Scholar

Luzi, O., and R. Monducci. 2016. “The new statistical register Frame-SBS: overview and perspectives.” Rivista di Statistica Ufficiale. N.1/2016. Available at: https://www.istat.it/it/files//2016/11/1_luzi.pdf (accessed March 2022). Search in Google Scholar

Reid, G., F. Zabala, and A. Holmberg. 2017. “Extending TSE to Administrative Data: A Quality Framework and Case Studies from Stats NZ.” Journal of Official Statistics, 33(2): 477–511. DOI: http://dx.doi.org/10.1515/JOS-2017-0023.10.1515/jos-2017-0023 Search in Google Scholar

Runci, M.C., G. Di Bella, and L. Galiè. 2016. Il sistema di integrazione dei dati amministrativi in Istat. Istat working paper, 18. Available at: https://www.istat.it/it/files//2016/11/IWP_18_20161.pdf (accessed March 2022). Search in Google Scholar

Statistics New Zeeland. 2016. Guide to Reporting on Administrative Data Quality. Available at: https://www.stats.govt.nz/methods/data-integration/guide-to-reporting-on-admindata-quality.aspx (Accessed March 2022). Search in Google Scholar

UNECE. 2019. Generic Statistical Data Editing Model. Version 2.0, June 2019, Available at: https://statswiki.unece.org/display/sde/GSDEM (accessed March 2022). Search in Google Scholar

United Nations. 2000. Terminology on statistical metadata. United Nations Statistical Commission and Economic Commission for Europe, Conference of European statisticians, statistical standards and studied, Geneva. 53. Available at: https://ec.europa.eu/eurostat/ramon/coded_files/UNECE_TERMINOLOGY_STAT_META-DATA_2000_EN.pdf (accessed March 2022). Search in Google Scholar

Wallgren, A., and B. Wallgren. 2014. Register based statistics: Administrative data for statistical purposes. John Wiley & Sons, Ltd.10.1002/9781118855959 Search in Google Scholar

Zhang, L.C. 2012. Topics of statistical theory for register-based statistics and data integration. Statistica Neerlandica 66 (1): 41–63. DOI: https://doi.org/10.1111/j.1467-9574.2011.00508.x.10.1111/j.1467-9574.2011.00508.x Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo