1. bookVolume 38 (2022): Edizione 2 (June 2022)
Dettagli della rivista
License
Formato
Rivista
eISSN
2001-7367
Prima pubblicazione
01 Oct 2013
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese
access type Accesso libero

Some Thoughts on Official Statistics and its Future (with discussion)

Pubblicato online: 14 Jun 2022
Volume & Edizione: Volume 38 (2022) - Edizione 2 (June 2022)
Pagine: 557 - 598
Ricevuto: 01 Sep 2020
Accettato: 01 Feb 2021
Dettagli della rivista
License
Formato
Rivista
eISSN
2001-7367
Prima pubblicazione
01 Oct 2013
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese
Abstract

In this article, we share some reflections on the state of statistical science and its evolution in the production systems of official statistics. We first try to make a synthesis of the evolution of statistical thinking. We then examine the evolution of practices in official statistics, which had to face very early on a diversification of sou rces: first with the use of censuses, then sample surveys and finally administrative files. At each stage, a profound revision of methods was necessary. We show that since the middle of the 20th century, one of the major challenges of statistics has been to produce estimates from a variety of sources. To do this, a large number of methods have been proposed which are based on very different f oundations. The term “big data” encompasses a set of sources and new statistical methods. We first examine the potential of valorization of big data in official statistics. Some applications such as image analysis for agricultural prediction are very old and will be further developed. However, we report our skepticism towards web-scrapping methods. Then we examine the use of new deep learning methods. With access to more and more sources, the great challenge will remain the valorization and harmonization of these sources.

Keywords

Bastin, C., J.P. Benzécri, C. Bougarit, and P. Cazes. 1980. Pratique de l’Analyse des Donnees. Paris: Dunod. Search in Google Scholar

Beaumont, J.-F., and C. Bocci. 2008. “Another look at ridge calibration.” Metron 66(1): 5–20. Available at: https://www.dss.uniroma1.it/RePec/mtn/articoli/2008-1-1.pdf (accessed February 2022). Search in Google Scholar

Bellhouse, D.R. 1988. “A brief history of random sampling methods.” In Handbook of Statistics, edited by P.R. Krishnaiah and C.R. Rao, 6: 1–14, New York, Amsterdam. Elsevier/North-Holland. DOI: https://doi.org/10.1016/S0169-7161(88)06003-1.10.1016/S0169-7161(88)06003-1 Search in Google Scholar

Benzécri, J.-P. 1973a. L’analyse des données: tome 1: La taxinomie. L’analyse des données. Paris: Bordas. Search in Google Scholar

Benzécri, J.-P. 1973b. L’analyse des données: tome 2: L’analyse des correspondances. L’analyse des données. Paris: Bordas. Search in Google Scholar

Bethlehem, J.G. 2009. The rise of survey sampling. The Hague: Statistics Netherlands. DOI: https://pure.uva.nl/ws/files/24636645/74286_312955.pdf (accessed February 2022). Search in Google Scholar

Boistard, H., G. Chauvet, and D. Haziza. 2016. “Doubly robust inference for the distribution function in the presence of missing survey data.” Scandinavian Journal of Statistics 43(3): 683–699. DOI: https://doi.org/10.1111/sjos.12198.10.1111/sjos.12198 Search in Google Scholar

Borges, J. 2012. Inquisiciones –– Otras inquisiciones. Penguin Random House Grupo Editorial España. Search in Google Scholar

Box, G.E.P., and N.R. Draper. 2007. Response Surfaces, Mixtures, and Ridge Analyses 649. Hoboken: John Wiley & Sons. Available at: https://www.wiley.com/enus/Response+Surfaces%2C+Mixtures%2C+and+Ridge+Analyses%2C+2nd+Edition-p-9780470053577 (accessed February 2022). Search in Google Scholar

Breidt, F.J., and J.D. Opsomer. 2000. “Local polynomial regresssion estimators in survey sampling.” The Annals of Statistics 28(4): 1026–1053. DOI: https://doi.org/10.1214/aos/1015956706.10.1214/aos/1015956706 Search in Google Scholar

Breidt, F.J., and J.D. Opsomer. 2017. “Model-assisted survey estimation with modern prediction techniques.” Statistical Science 32(2): 190–205. DOI: https://doi.org/10.1214/16-STS589.10.1214/16-STS589 Search in Google Scholar

Brewer, K.R.W. 1963. “A model of systematic sampling with unequal probabilities.” Australian Journal of Statistics 5: 5–13. DOI: https://doi.org/10.1111/j.1467-842X.1963.tb00132.x.10.1111/j.1467-842X.1963.tb00132.x Search in Google Scholar

Brewer, K.R.W. 2013. “Three controversies in the history of survey sampling.” Survey Methodology 39(2): 249–262. Available at: https://www150.statcan.gc.ca/n1/pub/12-001-x/2013002/article/11883-eng.pdf (accessed February 2022). Search in Google Scholar

Brick, M.J. 2013. “Unit Nonresponse and Weighting Adjustments: A Critical Review.” Journal of Official Statistics 29(3): 329–353. DOI: https://doi.org/10.2478/jos-2013-0026.10.2478/jos-2013-0026 Search in Google Scholar

Capel, R., Monod, D., and Müller, J.-P. 1996. “Essai sur le rôle des tests d’hypothèse en sciences humaines.” Actualités Pédagogiques 1: 1–51. Available at: http://moityca.-com/pdfs/Essai.pdf (accessed February 2022). Search in Google Scholar

Carfagna, E., and F.J. Gallego. 2005. “Using remote sensing for agricultural statistics.” International statistical review 73(3): 389–404. DOI: https://doi.org/10.1111/j.1751-5823.2005.tb00155.x.10.1111/j.1751-5823.2005.tb00155.x Search in Google Scholar

Cavallo, A., and R. Rigobon. 2016. “The billion prices project: Using online prices for measurement and research.” Journal of Economic Perspectives 30(2): 151–178. DOI: https://doi.org/10.1257/jep.30.2.151.10.1257/jep.30.2.151 Search in Google Scholar

Chambers, R.L., and R.G. Clark. 2012. An Introduction to Model-Based Survey Sampling with Applications. Oxford: Oxford University Press. DOI: https://doi.org/10.1093/acprof:oso/9780198566625.001.0001.10.1093/acprof:oso/9780198566625.001.0001 Search in Google Scholar

Chen, J.K.T., R.L. Valliant, and M.R. Elliott. 2019. “Calibrating nonprobability surveys to estimated control totals using LASSO, with an application to political polling.” Journal of the Royal Statistical Society 68(3): 657–681. DOI: https://doi.org/10.1111/rssc.12327.10.1111/rssc.12327 Search in Google Scholar

Chen, S., and D. Haziza. 2017. “Multiply robust imputation procedures for the treatment of item nonresponse in surveys.” Biometrika 104(2): 439–453. DOI: https://doi.org/10.1093/biomet/asx007.10.1093/biomet/asx007 Search in Google Scholar

Connelly, R., C.J. Playford, V. Gayle, and C. Dibben. 2016. “The role of administrative data in the big data revolution in social science research.” Social science research 59: 1–12. DOI: https://doi.org/10.1016/j.ssresearch.2016.04.015.10.1016/j.ssresearch.2016.04.01527480367 Search in Google Scholar

Conseil d’éthique de la statistique. 2012. Charte de la statistique publique de la Suisse. Office fédéral de la statistique. Neuchâtel. Available at: https://www.conseilethiquestat.ch/fr/assets/File/charte/940-1400.pdf (accessed February 2022). Search in Google Scholar

Costantini, D., and M.C. Galavotti. 1986. “Induction and deduction in statistical analysis.” Erkenntnis 24: 73–94. DOI: https://doi.org/10.1007/BF00183203.10.1007/BF00183203 Search in Google Scholar

Dagdoug, M., Goga, C., and D. Haziza. 2020a. Imputation procedures in surveys using nonparametric and machine learning methods: an empirical comparison. Available at: https://arxiv.org/abs/2007.06298 (accessed February 2022).10.1093/jssam/smab004 Search in Google Scholar

Dagdoug, M., Goga, C., and D. Haziza. 2020b. Model-assisted estimation through random forests in finite population sampling. Available at: https://arxiv.org/abs/2002.09736 (accessed February 2022). Search in Google Scholar

Deming, W.E., and F.F. Stephan. 1940. “On a least square adjustment of sampled frequency table when the expected marginal totals are known.” Annals of Mathematical Statistics 11: 427–444. DOI: https://doi.org/10.1214/aoms/1177731829.10.1214/aoms/1177731829 Search in Google Scholar

Devaud, D., and Y. Tillé. 2019a. “Deville and Särndal’s calibration: revisiting a 25 years old successful optimization problem.” TEST 4: 1033–1065. DOI: https://doi.org/10.1007/s11749-019-00681-3.10.1007/s11749-019-00681-3 Search in Google Scholar

Devaud, D., and Y. Tillé. 2019b. “Rejoinder on: Deville and Särndal’s calibration: revisiting a 25 years old successful optimization problem.” TEST 28: 1087–1091. DOI: https://doi.org/10.1007/s11749-019-00681-3.10.1007/s11749-019-00681-3 Search in Google Scholar

Deville, J.-C. 1979. Une bonne petite enquête vaut-elle mieux qu’un mauvais recensement? Document de travail – Institut national de la statistique et des études économiques. Insee. Search in Google Scholar

Deville, J.-C. 2000. “Generalized calibration and application to weighting for non-response.” In Compstat – Proceedings in Computational Statistics: 14th Symposium Held in Utrecht, The Netherlands 65–76. New York: Springer. DOI: https://doi.org/10.1007/978-3-642-57678-2_6.10.1007/978-3-642-57678-2_6 Search in Google Scholar

Deville, J.-C., and C.-E. Särndal. 1992. “Calibration estimators in survey sampling.” Journal of the American Statistical Association 87: 376–382. DOI: https://doi.org/10.1080/01621459.1992.10475217.10.1080/01621459.1992.10475217 Search in Google Scholar

Deville, J.-C., and Y. Tillé. 2004. “Efficient balanced sampling: The cube method.” Biometrika 91: 893–912. DOI: https://doi.org/10.1093/biomet/91.4.893.10.1093/biomet/91.4.893 Search in Google Scholar

Dupont, F. 1994. “Calibration used as a nonresponse adjustment, studies in classification, data analysis, and knowledge organization.” In New Approaches in Classification and Data Analysis, edited by E. Diday: 539–548. Springer-Verlag.10.1007/978-3-642-51175-2_63 Search in Google Scholar

Fisher, R.A. 1935. “The logic of inductive inference.” Journal of the royal statistical society 98(1): 39–82. Available at https://rss.onlinelibrary.wiley.com/doi/10.1111/j.2397-2335.1935.tb04208.x (accessed February 2022).10.2307/2342435 Search in Google Scholar

Fraser, D.A.S., and N. Reid. 2016. “Crisis in science? or crisis in statistics! mixed messages in statistics with impact on science.” Journal of Statistical Research 48(1): 1–9. Available at: http://www.utstat.utoronto.ca/reid/research/273-v8-nr.pdf (accessed February 2022). Search in Google Scholar

Fuller, W.A., M.M. Loughin, and H.D. Baker. 1994. “Regression weighting in the presence of nonresponse with application to the 1987-1988 nationwide food consumption survey.” Survey Methodology 20: 75–85. Available at: https://www150.statcan.gc.ca/n1/en/pub/12-001-x/1994001/article/14429-eng.pdf?st=uKDnj6Zz (accessed February 2022). Search in Google Scholar

Gallego, F.J. 2004. “Remote sensing and land cover area estimation.” International Journal of Remote Sensing 25(15): 3019–3047. DOI: https://doi.org/10.1080/01431160310001619607.10.1080/01431160310001619607 Search in Google Scholar

Gallego, F.J., J. Delincé, and C. Rueda. 1993. “Crop area estimates through remote sensing: stability of the regression correction.” International Journal of Remote Sensing 14(18): 3433–3445. DOI: https://doi.org/10.1080/01431169308904456.10.1080/01431169308904456 Search in Google Scholar

Gelman, A. 2011. “Induction and deduction in Bayesian data analysis.” Rationality, Markets and Morals 2(67–78): 1999. Available at: https://link.springer.com/article/10.1007/BF00183203 (accessed February 2022). Search in Google Scholar

Gelman, A., and E. Loken. 2014. “The statistical crisis in science: data-dependent analysis-a “garden of forking paths”-explains why many statistically significant comparisons don’t hold up.” American scientist 102(6): 460–466. DOI: https://doi.org/10.1511/2014.111.460.10.1511/2014.111.460 Search in Google Scholar

Gini, C., and L. Galvani. 1929. “Di una applicazione del metodo rappresentativo al censimento italiano della popolazione (1. dicembre 1921).” Annali di Statistica, Series 4: 1–107. Search in Google Scholar

Goga, C., and M.A. Shehzad. 2014. “A note on partially penalized calibration.” Pakistan Journal of Statistics 30(4): 429–438. Search in Google Scholar

Guandalini, A., and Y. Tillé. 2017. “Design-based estimators calibrated on estimated totals from multiple surveys.” International Statistical Review 85: 250–269. DOI: https://doi.org/10.1111/insr.12160.10.1111/insr.12160 Search in Google Scholar

Han, P., and L. Wang. 2013. “Estimation with missing data: beyond double robustness.” Biometrika 100(2): 417–430. DOI: https://doi.org/10.1093/biomet/ass087.10.1093/biomet/ass087 Search in Google Scholar

Hansen, M.H. 1987. “Some history and reminiscences on survey sampling.” Statistical Science 2: 180–190. DOI: https://doi.org/10.1214/ss/1177013352.10.1214/ss/1177013352 Search in Google Scholar

Hansen, M.H., and W.G. Madow. 1974. “Some important events in the historical development of sample survey.” In On the History of Statistics and Probability, edited by D.B. Owen: 75–102. New York: Marcel Dekker. Search in Google Scholar

Harford, T. 2014. “Big data: A big mistake” Significance 11(5): 14–19. DOI: https://doi.org/10.1111/j.1740-9713.2014.00778.x.10.1111/j.1740-9713.2014.00778.x Search in Google Scholar

Harman, G., and S. Kulkarni. 2012. Reliable Reasoning: Induction and Statistical Learning Theory. Cambridge, Massachusetts: MIT Press. Available at: https://mitpress.mit.edu/books/reliable-reasoning (accessed February 2022). Search in Google Scholar

Haziza, D., and É. Lesage. 2016. “A discussion of weighting procedures for Unit Nonresponse.” Journal of Official Statistics 32(1): 129–145. DOI: https://doi.org/10.1515/jos-2016-0006.10.1515/jos-2016-0006 Search in Google Scholar

Ioannidis, J.P. 2005. “Why most published research findings are false.” PLoS medicine 2(8): e124. DOI: https://doi.org/10.1371/journal.pmed.0020124.10.1371/journal.pmed.0020124118232716060722 Search in Google Scholar

Jensen, A. 1926. “Report on the representative method in statistics.” Bulletin of the International Statistical Institute 22: 359–380. Search in Google Scholar

Kang, J.D.Y., and J.L. Schafer. 2007. “Demystifying double robustness: A comparison of alternative strategies for estimating a population mean from incomplete data.” Statistical Science 22(4): 523–539. DOI: https://doi.org/10.1214/07-STS227.10.1214/07-STS227239755518516239 Search in Google Scholar

Kerr, N.L. 1998. “Harking: Hypothesizing after the results are known.” Personality and Social Psychology Review 2(3): 196–217. DOI: https://doi.org/10.1207/s15327957pspr0203_4.10.1207/s15327957pspr0203_415647155 Search in Google Scholar

Kiær, A.N. 1896. “Observations et expériences concernant des dénombrements représentatifs.” Bulletin de l’Institut International de Statistique 9: 176–183. Search in Google Scholar

Kiær, A.N. 1899. “Sur les méthodes représentatives ou typologiques appliquées à la statistique.” Bulletin de l’Institut International de Statistique 11: 180–185. Search in Google Scholar

Kiær, A.N. 1903. “Sur les méthodes représentatives ou typologiques.” Bulletin de l’Institut International de Statistique 13: 66–78. Search in Google Scholar

Kiær, A.N. 1905. “Discours sans intitulé sur la méthode représentative.” Bulletin de l’Institut International de Statistique 14: 119–134. Search in Google Scholar

Kim, J.K., and D. Haziza. 2014. “Doubly robust inference with missing data in survey sampling.” Statistica Sinica 24(1): 375–394. DOI: https://doi.org/10.5705/ss.2012.005.10.5705/ss.2012.005 Search in Google Scholar

Kott, P.S. 2006. “Using calibration weighting to adjust for nonresponse and coverage errors.” Survey Methodology 32: 133–142. Available at: https://www150.statcan.gc.ca/n1/en/pub/12-001-x/2006002/article/9547-eng.pdf?st=63fu-3Bc (accessed February 2022). Search in Google Scholar

Kruskal, W., and F. Mosteller. 1980. “Representative sampling, IV: The history of the concept in statistics, 1895–1939.” International Statistical Review 48: 169–195. DOI: https://doi.org/10.2307/140315.10.2307/140315 Search in Google Scholar

Kussul, N., Lemoine, G., F.J. Gallego, S.V. Skakun, M. Lavreniuk, and A.Y. Shelestov. 2016. “Parcel-based crop classification in ukraine using landsat-8 data and sentinel-1a data.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 9(6): 2500–2508. DOI: https://doi.org/10.1109/JSTARS.2016.2560141.10.1109/JSTARS.2016.2560141 Search in Google Scholar

Lehmann, E.L. 1993. “The Fisher, Neyman-Pearson theories of testing hypotheses: one theory or two?” Journal of the American Statistical Association 88(424): 1242–1249. DOI: https://doi.org/10.1080/01621459.1993.10476404.10.1080/01621459.1993.10476404 Search in Google Scholar

Lundström, S., and C.-E. Särndal. 1999. “Calibration as a Standard Method for Treatment of Nonresponse.” Journal of Official Statistics 15: 305–327. Available at: https://www.scb.se/contentassets/ca21efb41fee47d293bbee5bf7be7fb3/calibration-as-a-standard-method-for-treatment-of-nonresponse.pdf (accessed March 2022). Search in Google Scholar

Mayor-Gallego, J., J. Moreno-Rebollo, and M. Jimenez-Gamero. 2019. “Estimation of the finite population distribution function using a global penalized calibration method.” AStA Advances in Statistical Analysis 103(1): 1–35. DOI: https://doi.org/10.1007/s10182-018-0321-z.10.1007/s10182-018-0321-z Search in Google Scholar

McConville, K.S., F.J. Breidt, T.C.M. Lee, and G.G. Moisen. 2017. “Model-assisted survey regression estimation with the lasso.” Journal of Survey Statistics and Methodology 5(2): 131–158. DOI: https://doi.org/10.1093/jssam/smw041.10.1093/jssam/smw041 Search in Google Scholar

Molina, I., and E. Strzalkowska-Kominiak. 2020. “Estimation of proportions in small areas: application to the labour force using the swiss census structural survey.” Journal of the Royal Statistical Society A183(1): 281–310. DOI: https://doi.org/10.1111/rssa.12498.10.1111/rssa.12498 Search in Google Scholar

Neyman, J. 1934. “On the two different aspects of the representative method: The method of stratified sampling and the method of purposive selection.” Journal of the Royal Statistical Society 97: 558–606. DOI: https://doi.org/10.2307/2342192.10.2307/2342192 Search in Google Scholar

Neyman, J. 1938. “Contribution to the theory of sampling human population.” Journal of the American Statistical Association 33: 101–116. Available at: https://doi.org/10.1080/01621459.1938.10503378.10.1080/01621459.1938.10503378 Search in Google Scholar

Neyman, J. 1952. “Lectures and Conferences on Mathematical Statistics and Probability.” Graduate School, U.S. Department of Agriculture, Washington. DOI: https://doi.org/10.1038/142274a0.10.1038/142274a0 Search in Google Scholar

Neyman, J. 1957. “Inductive Behavior” as a basic concept of philosophy of science.” Revue de l’Institut International de Statistique 25: 7–22. DOI: https://doi.org/10.2307/1401671.10.2307/1401671 Search in Google Scholar

Popper, K. 2005. The logic of scientific discovery. London: Routledge.10.4324/9780203994627 Search in Google Scholar

Quetelet, A. 1846. Lettres à S.A.R. le Duc régnant de Saxe-Cobourg et Gotha, sur la théorie des probabilités appliquées aux sciences morales et politiques. Bruxelles: M. Hayez. Search in Google Scholar

Rao, J.N.K., and I. Molina. 2015. Small Area Estimation. New York: Wiley. Available at: https://www.wiley.com/en-us/Small+Area+Estimation%2C+2nd+Edition-p-9781118735787 (accessed February 2022).10.1002/9781118735855 Search in Google Scholar

Royall, R.M. 1970. “On finite population sampling theory under certain linear regression models.” Biometrika 57: 377–387. DOI: https://doi.org/10.1093/biomet/57.2.377.10.1093/biomet/57.2.377 Search in Google Scholar

Royall, R.M. 1971. “Linear regression models in finite population sampling theory.” In Foundations of Statistical Inference, edited by V.P. Godambe and D.A. Sprott: 259–279. Toronto, Montreal: Holt, Rinehart et Winston. Search in Google Scholar

Royall, R.M. 1976. “The linear least squares prediction approach to two-stage sampling.” Journal of the American Statistical Association 71: 657–664. DOI: https://doi.org/10.1080/01621459.1976.10481542.10.1080/01621459.1976.10481542 Search in Google Scholar

Särndal, C.-E. 2007. “The calibration approach un survey theory and practice.” Survey Methodology 33: 99–119. Available at: https://www150.statcan.gc.ca/n1/en/catalogue/12-001-X200700210488 (accessed February 2022). Search in Google Scholar

Särndal, C.-E., and S. Lundström. 2005. Estimation in Surveys with Nonresponse. New York: Wiley. Available at: https://onlinelibrary.wiley.com/doi/book/10.1002/0470011351 (accessed February 2022). Search in Google Scholar

Särndal, C.-E., B. Swensson, and J.H. Wretman. 1992. Model Assisted Survey Sampling. New York: Springer. Available at: https://link.springer.com/book/9780387406206 (accessed February 2022).10.1007/978-1-4612-4378-6 Search in Google Scholar

Statistics Canada. 2017. Statistics Canada’s Quality Assurance Framework. Documentation of the internet site of Statistics Canada. Statistics Canada, Ottawa. Available at: https://www150.statcan.gc.ca/n1/en/catalogue/12-586-X (accessed February 2022). Search in Google Scholar

Tan, Z. 2020. “Regularized calibrated estimation of propensity scores with model misspecification and high-dimensional data.” Biometrika 107(1): 137–158. Available at: https://doi.org/10.1093/biomet/asz059.10.1093/biomet/asz059 Search in Google Scholar

Taylor, J., Sannier, C., J. Delincé, and F.J. Gallego. 1997. Regional crop inventories in Europe assisted by remote sensing. Synthesis Report, Office for Publications of the European Commission. Available at: https://op.europa.eu/en/publication-detail/-/publication/dbec0d28-e918-452d-a70b-6706946ae935 (accessed February 2022). Search in Google Scholar

Ten Bosch, O., D. Windmeijer, A. van Delden, G. van den Heuvel G. 2018. “Web scraping meets survey design: Combining forces.” In Big Data Meets Survey Science Conference, October 25–27, Barcelona, Spain. Available at: https://www.european-surveyresearch.org/bigsurv18/uploads/73/61/20180820_BigSurv_WebscrapingMeets-SurveyDesign.pdf (accessed February 2022). Search in Google Scholar

Tibshirani, R.J. 1996. “Regression shrinkage and selection via the lasso.” Journal of the Royal Statistical Society 58(1): 267–288. Available at: https://doi.org/10.1111/j.2517-6161.1996.tb02080.x.10.1111/j.2517-6161.1996.tb02080.x Search in Google Scholar

Tibshirani, R.J. 2011. “Regression shrinkage and selection via the lasso: a retrospective.” Journal of the Royal Statistical Society B73(3): 273–282. DOI: https://doi.org/10.1111/j.1467-9868.2011.00771.x.10.1111/j.1467-9868.2011.00771.x Search in Google Scholar

Tillé, Y. 2020. Sampling and Estimation From Finite Populations. Hoboken: Wiley. Available at: https://www.wiley.com/en-us/Sampling+and+Estimation+from+Finite+Populations-p-9780470682050 (accessed February 2022).10.1002/9781119071259 Search in Google Scholar

Tukey, J.W. 1977. Exploratory Data Analysis, volume 2. Reading, MA: Addison-Wesley. Search in Google Scholar

U.S. Bureau of Labor Statistics. 2021. Consumer price index. Available at: https://www.bls.gov/cpi/factsheets/airline-fares.htm (accessed February 2022). Search in Google Scholar

Valliant, R., Dever, J.A., and F. Kreuter. 2013. Practical Tools for Designing and Weighting Survey Samples. New York: Springer. Available at: https://link.springer.-com/book/10.1007/978-1-4614-6449-5 (accessed February 2022).10.1007/978-1-4614-6449-5 Search in Google Scholar

Valliant, R., A.H. Dorfman, and R.M. Royall. 2000. Finite Population Sampling and Inference: A Prediction Approach. New York: Wiley. Available at: https://www.wiley.com/enus/Finite+Population+Sampling+and+Inference%3A+A+Prediction+Approach-p-9780471293415 (accessed February 2022). Search in Google Scholar

Wasserstein, R.L., and N.A. Lazar. 2016. “The ASA statement on p-values: Context, process, and purpose.” The American Statistician 70(2): 129–133. DOI: https://doi.org/10.1080/00031305.2016.1154108.10.1080/00031305.2016.1154108 Search in Google Scholar

Wikipedia contributors. 2020. “Martha Farnsworth Riche – Wikipedia, the free encyclopedia.” Available at: https://en.wikipedia.org/wiki/Martha_Farnsworth_Riche (accessed February 2022). Search in Google Scholar

Yang, S., and J.K. Kim. 2020. “Statistical data integration in survey sampling: A review.” Japanese Journal of Statistics and Data Science 3: 625–650. DOI: https://doi.org/10.1007/s42081-020-00093-w.10.1007/s42081-020-00093-w Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo