[
AghaKouchak, A., Easterling, D., Hsu, K., Schubert, S., Sorooshian, S. (Eds.), 2013. Extremes in a changing climate: detection, analysis and uncertainty. Water Science and Technology Library, 65. Springer Dordrecht, 426 p. ISBN 978-94-007-4478-3
]Search in Google Scholar
[
Ansari, R., Casanueva, A., Liaqat, M.U., Grossi, G., 2023. Evaluation of bias correction methods for a multivariate drought index: case study of the Upper Jhelum Basin. Geosci. Model Dev., 16, 7, 2055–2076. https://doi.org/10.5194/gmd-16-2055-2023
]Search in Google Scholar
[
Bara, M., Gaál, L., Kohnová, S., Szolgay, J., Hlavčová, K., 2008. Simple scaling of extreme rainfall in Slovakia: a case study. Meteorologický Časopis/Meteorol. J., 11, 4, 153–157.
]Search in Google Scholar
[
Ban, N., Schmidli, J., Schär, C., 2015. Heavy rainfall in a changing climate: Does short-term summer rainfall increase faster? Geophys. Res. Lett., 42, 4, 1165–1172. https://doi.org/10.1002/2014GL062588
]Search in Google Scholar
[
Bendjoudi, H., Hubert, P., Schertzer, D., Lovejoy, S., 1997. Multifractal point of view on rainfall intensity–duration– frequency curves. C. R. Acad. Sci. Paris Earth Planet. Sci., 5, 325, 323–326 (in French)
]Search in Google Scholar
[
Berg, P., Christensen, O.B., Klehmet, K., Lenderink, G., Olsson, J., Teichmann, C., Yang, W., 2019. Summer time precipitation extremes in a EURO-CORDEX 0.11° ensemble at an hourly resolution, Nat. Hazards Earth Syst. Sci., 19, 4, 957–971. https://doi.org/10.5194/nhess-19-957-2019
]Search in Google Scholar
[
Blenkinsop, S., Chan, S.C., Kendon, E.J., Roberts, N.M., Fowler, H.J., 2015. Temperature influences on intense UK hourly precipitation and dependency on large-scale circulation. Environ. Res. Let., 10, 5, 054021. https://doi.org/10.1088/1748-9326/10/5/054021
]Search in Google Scholar
[
Bohuš, I., Briedoň, V., Chomicz, K., Intribus, R., Kňazovický, L., Kolodziejek, M., Konček, M., Kurpelová, M., Murínová, G., Myczkowski, S., Orlicz, M., Orliczowa, J., Otruba, J., Pacl, J., Peterka, V., Petrovič, Š., Plesník, P., Pulina, M., Smolen, F., Sokolowska, J., Šamaj, F., Tomlain, J., Volfová, E., Wiszniewski, W., Wit-Jóźwikowa, K., Zych, S., Žák, B., 1974. The Climate of the Tatras. Veda, Bratislava, 856 p. (In Slovak.)
]Search in Google Scholar
[
Burlando, P., Rosso, R., 1996. Scaling and multiscaling models of depth-duration-frequency curves for storm precipitation. J. Hydrol., 187, 1–2, 45–64. https://doi.org/10.1016/S0022-1694(96)03086-7
]Search in Google Scholar
[
Cannon, A.J., Sobie, S.R., Murdock, T.Q., 2015. Bias correction of GCM precipitation by quantile mapping: how well do methods preserve changes in quantiles and extremes? J. Climate, 28, 17, 6938–6959. https://doi.org/10.1175/JCLI-D-14-00754.1
]Search in Google Scholar
[
Casas-Castillo, M.d.C., Rodríguez-Solà, R., Llabrés-Brustenga, A., García-Marín, A.P., Estévez, J., Navarro, X., 2022. A simple scaling analysis of rainfall in Andalusia (Spain) under different precipitation regimes. Water, 14, 8, 1303. https://doi.org/10.3390/w14081303
]Search in Google Scholar
[
Casas-Castillo, M.d.C., Rodríguez-Solà, R., Navarro, X., Russo, B., Lastra, A., González, P., Redaño, A., 2018. On the consideration of scaling properties of extreme rainfall in Madrid (Spain) for developing a generalized intensityduration- frequency equation and assessing probable maximum precipitation estimates. Theor. Appl. Climatol., 131, 573–580. https://doi.org/10.1007/s00704-016-1998-0
]Search in Google Scholar
[
Coles, S., 2001. An Introduction to Statistical Modeling of Extreme Values. Springer Series in Statistics. Springer- Verlag. https://doi.org/10.1007/978-1-4471-3675-0
]Search in Google Scholar
[
Das, P., Zhang, Z., Ren, H., 2022. Evaluation of four bias correction methods and random forest model for climate change projection in the Mara River Basin, East Africa. J. Water Clim. Change, 13, 4, 1900–1919. https://doi.org/10.2166/wcc.2022.299
]Search in Google Scholar
[
De Michele, C., Kottegoda, N.T., Rosso, R., 2002. IDAF (intensity-duration-area frequency) curves of extreme storm rainfall: a scaling approach. Water Sci. Technol., 45, 2, 83-90. https://doi.org/10.2166/wst.2002.0031
]Search in Google Scholar
[
Derdour, S., Ghenim, A.N., Megnounif, A., Tangang, F., Chung, J.X., Ayoub, A.B., 2022. Bias correction and evaluation of precipitation data from the CORDEX regional climate model for monitoring climate change in the Wadi Chemora Basin (Northeastern Algeria). Atmosphere, 13, 11, 1876. https://doi.org/10.3390/atmos13111876
]Search in Google Scholar
[
Diedhiou, C.W., Panthou, G., Diatta, S., Sané, Y., Vischel, T., Camara, M., 2024. Simple scaling of extreme precipitation regime in Senegal. Sci. Afr., 23, e02034, https://doi.org/10.1016/j.sciaf.2023.e02034
]Search in Google Scholar
[
Dobor, L., Hlásny, T., 2019. Choice of reference climate conditions matters in impact studies: Case of bias‐corrected CORDEX data set. Int. J. Climatol., 39, 4, 2022–2040. https://doi.org/10.1002/joc.5930
]Search in Google Scholar
[
Cheng, L., AghaKouchak, A., 2014. Nonstationary precipitation intensity-duration-frequency curves for infrastructure design in a changing climate. Sci. Rep., 4, 1, 1–6. https://doi.org/10.1038/srep07093
]Search in Google Scholar
[
Chen, J., Yang, Y., Tang, J., 2022. Bias correction of surface air temperature and precipitation in CORDEX East Asia simulation: What should we do when applying bias correction? Atmos. Res., 280, 106439. https://doi.org/10.1016/j.atmosres.2022.106439
]Search in Google Scholar
[
Feitoza Silva, D., Simonovic, S.P., Schardong, A., Avruch Goldenfum, J., 2021. Introducing non-stationarity into the development of intensity-duration-frequency curves under a changing climate. Water, 13, 8, 1008. https://doi.org/10.3390/w13081008
]Search in Google Scholar
[
Földes, G., Labat, M.M., Kohnová, S., Hlavčová, K., 2022. Impact of changes in short-term rainfall on design floods: Case study of the Hnilec River Basin, Slovakia. Slovak Journal of Civil Engineering, 30, 1, 68–74. https://doi.org/10.2478/sjce-2022-0008
]Search in Google Scholar
[
Friedlingstein, P., Jones, M. W., O'Sullivan, M., Andrew, R. M., Bakker, D. C., Hauck, J. et al., 2022. Global carbon budget 2021. Earth Sys. Sci. Data, 14, 4, 1917–2005. https://doi.org/10.5194/essd-14-1917-2022
]Search in Google Scholar
[
Gampe, D., Schmid, J., Ludwig, R., 2019. Impact of reference dataset selection on RCM evaluation, bias correction, and resulting climate change signals of precipitation. J. Hydrometeorol., 20, 9, 1813–1828. https://doi.org/10.1175/JHM-D-18-0108.1
]Search in Google Scholar
[
Ganguli, P., Coulibaly, P., 2017. Does nonstationarity in rainfall require nonstationary intensity–duration–frequency curves? Hydrol. Earth Sys. Sci., 21, 12, 6461–6483. https://doi.org/10.5194/hess-21-6461-2017
]Search in Google Scholar
[
Ganguli, P., Coulibaly, P., 2019. Assessment of future changes in intensity-duration-frequency curves for Southern Ontario using North American (NA)-CORDEX models with nonstationary methods. J. Hydrol.: Reg. Stud., 22, 100587. https://doi.org/10.1016/j.ejrh.2018.12.007
]Search in Google Scholar
[
Ghimire, U., Srinivasan, G., Agarwal, A., 2019. Assessment of rainfall bias correction techniques for improved hydrological simulation. Int. J. Climatol., 39, 4, 2386–2399. https://doi.org/10.1002/joc.5959
]Search in Google Scholar
[
Gupta, V.K., Waymire, E., 1990. Multiscaling properties of spatial rainfall and river flow distributions. J. Geophys. Res.: Atmospheres, 95(D3), 1999–2009. https://doi.org/10.1029/JD095iD03p01999
]Search in Google Scholar
[
Hempel, S., Frieler, K., Warszawski, L., Schewe, J., Piontek, F., 2013. A trend-preserving bias correction – the ISI-MIP approach. Earth Sys. Dyn., 4, 2, 219–236. https://doi.org/10.5194/esd-4-219-2013
]Search in Google Scholar
[
Haerter, J.O., Hagemann, S., Moseley, C., Piani, C., 2011. Climate model bias correction and the role of timescales. Hydrol. Earth Sys. Sci., 15, 3, 1065–1079. https://doi.org/10.5194/hess-15-1065-2011
]Search in Google Scholar
[
Hlavčová, K., Lapin, M., Valent, P., Szolgay, J., Kohnová, S., Rončák, P., 2015. Estimation of the impact of climate changeinduced extreme precipitation events on floods. Contrib. Geophys. Geod., 45, 3, 173–192. https://doi.org/10.1515/congeo-2015-0019
]Search in Google Scholar
[
Holthuijzen, M., Beckage, B., Clemins, P.J., Higdon, D., Winter, J.M., 2022. Robust bias-correction of precipitation extremes using a novel hybrid empirical quantile-mapping method: Advantages of a linear correction for extremes. Theor. Appl. Climatol., 149, 1, 863–882. https://doi.org/10.1007/s00704-022-04035-2
]Search in Google Scholar
[
Hosseinzadehtalaei, P., Tabari, H., Willems, P., 2018. Precipitation intensity–duration–frequency curves for central Belgium with an ensemble of EURO-CORDEX simulations, and associated uncertainties. Atmos. Res., 200, 1–12. https://doi.org/10.1016/j.atmosres.2017.09.015
]Search in Google Scholar
[
Hui, Y., Xu, Y., Chen, J., Xu, C.Y., Chen, H., 2020. Impacts of bias nonstationarity of climate model outputs on hydrological simulations. Hydrol. Res., 51, 5, 925–941. https://doi.org/10.2166/nh.2020.254
]Search in Google Scholar
[
Ivanov, M.A., Kotlarski, S., 2017. Assessing distribution‐based climate model bias correction methods over an alpine domain: added value and limitations. Int. J. Climatol., 37, 5, 2633-2653. https://doi.org/10.1002/joc.4870
]Search in Google Scholar
[
Johnson, F., Sharma, A., 2012. A nesting model for bias correction of variability at multiple time scales in general circulation model precipitation simulations. Water Resour. Res., 48, 1. https://doi.org/10.1029/2011WR010464
]Search in Google Scholar
[
Katz, R.W., Parlange, M.B., Naveau, P., 2002. Statistics of extremes in hydrology. Adv. Water Resour., 25, 8-12, 1287-1304. https://doi.org/10.1016/S0309-1708(02)00056-8
]Search in Google Scholar
[
Koutsoyiannis, D., Foufoula‐Georgiou, E., 1993. A scaling model of a storm hyetograph. Water Resour. Res., 29, 7, 2345–2361. https://doi.org/10.1029/93WR00395
]Search in Google Scholar
[
Koutsoyiannis, D., Kozonis, D., Manetas, A., 1998. A mathematical framework for studying rainfall intensityduration-frequency relationships, J. Hydrol., 206, 1–2, 118-135. https://doi.org/10.1016/S0022-1694(98)00097-3
]Search in Google Scholar
[
Koutsoyiannis, D., Iliopoulou, T., 2022. Ombrian curves advanced to stochastic modeling of rainfall intensity. In: Morbidelli, R. (Ed.): Rainfall - Modeling, Measurement and Applications. Elsevier, pp. 261–284. https://doi.org/10.1016/B978-0-12-822544-8.00003-2
]Search in Google Scholar
[
Lehner, F., Nadeem, I., Formayer, H., 2020. An improved statistical bias correction method that also corrects dry climate models. Hydrol. Earth Sys. Sci. Discuss., 1–23. https://doi.org/10.5194/hess-2020-515
]Search in Google Scholar
[
Lehner, F., Nadeem, I., Formayer, H., 2023. Evaluating skills and issues of quantile-based bias adjustment for climate change scenarios. Adv. Stat. Climatol., Meteorol. and Oceanogr., 9, 1, 29–44. https://doi.org/10.5194/ascmo-9-29-2023
]Search in Google Scholar
[
Lenderink, G., Barbero, R., Loriaux, J.M., Fowler, H.J., 2017. Super-Clausius–Clapeyron scaling of extreme hourly convective precipitation and its relation to large-scale atmospheric conditions. J. Climate, 30, 15, 6037–6052. https://doi.org/10.1175/JCLI-D-16-0808.1
]Search in Google Scholar
[
Lin, R., Zhu, J., Zheng, F., 2019. The application of the SVD method to reduce coupled model biases in seasonal predictions of rainfall. J. Geophys. Res.: Atmospheres, 124, 22, 11837–11849. https://doi.org/10.1029/2018JD029927
]Search in Google Scholar
[
Mazzoglio, P., Butera, I., Alvioli, M., Claps, P., 2022. The role of morphology in the spatial distribution of short-duration rainfall extremes in Italy. Hydrol. Earth Sys. Sci., 26, 6, 1659–1672. https://doi.org/10.5194/hess-26-1659-2022
]Search in Google Scholar
[
Mehrotra, R., Sharma, A., 2012. An improved standardization procedure to remove systematic low frequency variability biases in GCM simulations. Water Resour. Res., 48, 12. https://doi.org/10.1029/2012WR012446
]Search in Google Scholar
[
Mehrotra, R., Sharma, A., 2019. A resampling approach for correcting systematic spatiotemporal biases for multiple variables in a changing climate. Water Resour. Res., 55, 1, 754–770. https://doi.org/10.1029/2018WR023270
]Search in Google Scholar
[
Meitner, J., Štěpánek, P., Skalák, P., Dubrovský, M., Lhotka, O., Penčevová, R., Zahradníček, P., Farda, A., Trnka, M., 2023. Validation and selection of a representative subset from the ensemble of EURO-CORDEX EUR11 regional climate model outputs for the Czech Republic. Atmosphere, 14, 9, 1442. https://doi.org/10.3390/atmos14091442
]Search in Google Scholar
[
Menabde, M., Seed, A., Pegram, G., 1999. A simple scaling model for extreme rainfall. Water Resour. Res., 35, 1, 335-339. https://doi.org/10.1029/1998WR900012
]Search in Google Scholar
[
Mészáros, J., Halaj, M., Polčák, N., Onderka, M., 2022. Mean annual totals of precipitation during the period 1991–2015 with respect to cyclonic situations in Slovakia. Időjárás/Quarterly Journal of the Hungarian Meteorological Service, 126, 2, 267-284. https://doi.org/10.28974/idojaras.2022.2.6
]Search in Google Scholar
[
Miao, C., Ashouri, H., Hsu, K.L., Sorooshian, S., Duan, Q., 2015. Evaluation of the PERSIANN-CDR daily rainfall estimates in capturing the behavior of extreme precipitation events over China. J. Hydrometeorol., 16, 3, 1387–1396. https://doi.org/10.1175/JHM-D-14-0174.1
]Search in Google Scholar
[
Molnar, P., Burlando, P., 2005. Preservation of rainfall properties in stochastic disaggregation by a simple random cascade model. Atmos. Res., 77, 1–4, 137–151. https://doi.org/10.1016/j.atmosres.2004.10.024
]Search in Google Scholar
[
National Weather Service, 2022. Analysis of Impact of Nonstationary Climate on NOAA Atlas 14 Estimates: Assessment Report. Available at: https://hdsc.nws.noaa.gov/hdsc/files25/NA14_Assessment_report_202201v1.pdf Accessed 05 May. 2024.
]Search in Google Scholar
[
Ngai, S.T., Juneng, L., Tangang, F., Chung, J.X., Supari, S., Salimun, E. et al., 2022. Projected mean and extreme precipitation based on bias-corrected simulation outputs of CORDEX Southeast Asia. Weather Clim. Extremes, 37, 100484. https://doi.org/10.1016/j.wace.2022.100484
]Search in Google Scholar
[
Nguyen, H., Mehrotra, R., Sharma, A., 2016. Correcting for systematic biases in GCM simulations in the frequency domain. J. Hydrol., 538, 117–126. https://doi.org/10.1016/j.jhydrol.2016.04.018
]Search in Google Scholar
[
Nhat, L.M., Tachikawa Y., Sayama T., Takara K., 2007. Regional rainfall intensity duration frequency relationships for ungauged catchments based on scaling properties. Annuals of Disas. Prev. Res. Inst., Kyoto Univ., 50 B, 33–43. Available at: https://hywr.kuciv.kyoto-u.ac.jp/publications/papers/2007DPRI_Nhat.pdf Accessed 15 Apr. 2024.
]Search in Google Scholar
[
Onderka, M., Pecho, J., 2021. Sensitivity of selected summertime rainfall characteristics to pre-event atmospheric and near-surface conditions. Atmos. Res., 259, 105671. https://doi.org/10.1016/j.atmosres.2021.105671
]Search in Google Scholar
[
Onderka, M., Pecho, J., Bodinger, L., Bičárová, S., Lukasová, V., Buchholcerová, A., Nejedlík, P., 2022. Relationships between intensity, duration and frequency of short-term rains determined by Bayesian inference of GEV distribution parameters. Meteorogické zprávy /Meteorol. Rep., 75, 3, 81-88. (In Slovak.)
]Search in Google Scholar
[
Onderka, M., Sokáč, M., Mikulová, K., Pecho, J., 2023. Digital atlas of rainfall design intensities in Slovakia. Meteorologický Časopis/Meteorol. J., 26, 1, 27–38. https://www.shmu.sk/File/met_cas/RR/2023-1_3%20Onderka.pdf Accessed 15 Apr. 2024.
]Search in Google Scholar
[
Osuch, M., Romanowicz, R.J., Lawrence, D., Wong, W.K., 2016. Trends in projections of standardized precipitation indices in a future climate in Poland. Hydrol. Earth Sys. Sci., 20, 5, 1947-1969. https://doi.org/10.5194/hess-20-1947-2016
]Search in Google Scholar
[
Piani, C., Haerter, J.O., Coppola, E., 2010. Statistical bias correction for daily precipitation in regional climate models over Europe. Theor. Appl. Climatol. 99, 187–192. https://doi.org/10.1007/s00704-009-0134-9
]Search in Google Scholar
[
Poschlod, B., Ludwig, R., Sillmann, J., 2021. Ten-year return levels of sub-daily extreme precipitation over Europe. Earth Sys. Sci. Data, 13, 3, 983–1003. https://doi.org/10.5194/essd-13-983-2021
]Search in Google Scholar
[
Ragno, E., AghaKouchak, A., Cheng, L., Sadegh, M., 2019. A generalized framework for process-informed nonstationary extreme value analysis. Adv. Water Resour., 130, 270–282. https://doi.org/10.1016/j.advwatres.2019.06.007
]Search in Google Scholar
[
Rosso, R., Burlando, P., 1990. Scale invariance in temporal and spatial rainfall. In: Proceedings of XV General Assembly European Geophysical Society, Annales Geophysicae, 145, 23–27 April 1990, Copenhagen, Denmark.
]Search in Google Scholar
[
Šamaj, F., 1959. Daily patterns of precipitation in the Danubian lowland and in the Tatra region. Acta Facultatis Rerum Naturalium Universitatis Comenianae, Meteorologia, 161–194. (In Slovak.)
]Search in Google Scholar
[
Shaw, S.B., Royem, A.A., Riha, S.J., 2011. The relationship between extreme hourly precipitation and surface temperature in different hydroclimatic regions of the United States. J. Hydrometeorol., 12, 2, 319–325. https://doi.org/10.1175/2011JHM1364.1
]Search in Google Scholar
[
Shin, J.Y., Lee, T., Park, T., Kim, S., 2019. Bias correction of RCM outputs using mixture distributions under multiple extreme weather influences. Theor. Appl. Climatol., 137, 201–216. https://doi.org/10.1007/s00704-018-2585-3
]Search in Google Scholar
[
Schmith, T., Thejll, P., Berg, P., Boberg, F., Christensen, O.B., Christiansen, B., Christensen, J.H., Madsen, M.S., Steger, C., 2021. Identifying robust bias adjustment methods for European extreme precipitation in a multi-model pseudoreality setting. Hydrol. Earth Sys. Sci., 25, 1, 273–290. https://doi.org/10.5194/hess-25-273-2021
]Search in Google Scholar
[
Schroeer, K., Kirchengast, G., 2018. Sensitivity of extreme precipitation to temperature: the variability of scaling factors from a regional to local perspective. Clim. Dynam., 50, 3981–3994. https://doi.org/10.1007/s00382-017-3857-9
]Search in Google Scholar
[
Schwalm, C.R., Glendon, S., Duffy, P.B., 2020. RCP8.5 tracks cumulative CO2 emissions. Proceedings of the National Academy of Sciences, 117, 33, 19656–19657. https://doi.org/10.1073/pnas.2007117117
]Search in Google Scholar
[
Singh, V.P., 2016. Handbook of Applied Hydrology, 2nd Ed. McGraw-Hill Education, New York, USA, 1440 p. Szabó-Takács, B., Farda, A., Skalák, P., Meitner, J., 2019. Influence of bias correction methods on simulated Köppen−Geiger climate zones in Europe. Clim., 7, 2, 18. https://doi.org/10.3390/cli7020018
]Search in Google Scholar
[
Szolgay J., Miklánek J., Výleta R., 2023. Interactions of natural and anthropogenic drivers and hydrological processes on local and regional scales: A review of main results of Slovak hydrology from 2019 to 2022. Acta Hydrologica Slovaca, 24, 2, 254–265. https://doi.org/10.31577/ahs-2023-0024.02.0028
]Search in Google Scholar
[
Teutschbein, C., Seibert, J., 2013. Is bias correction of regional climate model (RCM) simulations possible for non-stationary conditions? Hydrol. Earth Sys. Sci., 17, 12, 5061–5077. https://doi.org/10.5194/hess-17-5061-2013
]Search in Google Scholar
[
Tootoonchi, F., Todorović, A., Grabs, T., Teutschbein, C., 2023. Uni-and multivariate bias adjustment of climate model simulations in Nordic catchments: Effects on hydrological signatures relevant for water resources management in a changing climate. J. Hydrol., 623, 129807. https://doi.org/10.1016/j.jhydrol.2023.129807
]Search in Google Scholar
[
Vyshnevskyi, V., Shevchuk, S., 2022. Impact of climate change and human factors on the water regime of the Danube Delta. Acta Hydrologica Slovaca, 23, 2, 207–216. https://doi.org/10.31577/ahs-2022-0023.02.0023
]Search in Google Scholar
[
Wasko, C., Sharma, A., 2015. Steeper temporal distribution of rain intensity at higher temperatures within Australian storms. Nat. Geosci., 8, 7, 527–9. https://doi.org/10.1038/ngeo2456
]Search in Google Scholar
[
Wasko, C., Sharma, A., 2017. Continuous rainfall generation for a warmer climate using observed temperature sensitivities. J. Hydrol., 544, 575–90. https://doi.org/10.1016/j.jhydrol.2016.12.002
]Search in Google Scholar
[
Wood, A.W., Leung, L.R., Sridhar, V., Lettenmaier, D.P., 2004. Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Clim. Change, 62, 1, 189–216. https://doi.org/10.1023/B:CLIM.0000013685.99609.9e
]Search in Google Scholar
[
Yu, P.S., Yang, T.C., Lin, C.S., 2004. Regional rainfall intensity formulas based on scaling property of rainfall. J. Hydrol., 295, 1–4, 108–123. https://doi.org/10.1016/j.jhydrol.2004.03.003
]Search in Google Scholar
[
Zhao, W., Kinouchi, T., Nguyen, H.Q., 2021. A framework for projecting future intensity-duration-frequency (IDF) curves based on CORDEX Southeast Asia multi-model simulations: An application for two cities in Southern Vietnam. J. Hydrol., 598, 126461. https://doi.org/10.1016/j.jhydrol.2021.126461
]Search in Google Scholar