Accès libre

Applying a time-varying GEV distribution to correct bias in rainfall quantiles derived from regional climate models

, , , , , , , ,  et   
21 nov. 2024
À propos de cet article

Citez
Télécharger la couverture

AghaKouchak, A., Easterling, D., Hsu, K., Schubert, S., Sorooshian, S. (Eds.), 2013. Extremes in a changing climate: detection, analysis and uncertainty. Water Science and Technology Library, 65. Springer Dordrecht, 426 p. ISBN 978-94-007-4478-3 Search in Google Scholar

Ansari, R., Casanueva, A., Liaqat, M.U., Grossi, G., 2023. Evaluation of bias correction methods for a multivariate drought index: case study of the Upper Jhelum Basin. Geosci. Model Dev., 16, 7, 2055–2076. https://doi.org/10.5194/gmd-16-2055-2023 Search in Google Scholar

Bara, M., Gaál, L., Kohnová, S., Szolgay, J., Hlavčová, K., 2008. Simple scaling of extreme rainfall in Slovakia: a case study. Meteorologický Časopis/Meteorol. J., 11, 4, 153–157. Search in Google Scholar

Ban, N., Schmidli, J., Schär, C., 2015. Heavy rainfall in a changing climate: Does short-term summer rainfall increase faster? Geophys. Res. Lett., 42, 4, 1165–1172. https://doi.org/10.1002/2014GL062588 Search in Google Scholar

Bendjoudi, H., Hubert, P., Schertzer, D., Lovejoy, S., 1997. Multifractal point of view on rainfall intensity–duration– frequency curves. C. R. Acad. Sci. Paris Earth Planet. Sci., 5, 325, 323–326 (in French) Search in Google Scholar

Berg, P., Christensen, O.B., Klehmet, K., Lenderink, G., Olsson, J., Teichmann, C., Yang, W., 2019. Summer time precipitation extremes in a EURO-CORDEX 0.11° ensemble at an hourly resolution, Nat. Hazards Earth Syst. Sci., 19, 4, 957–971. https://doi.org/10.5194/nhess-19-957-2019 Search in Google Scholar

Blenkinsop, S., Chan, S.C., Kendon, E.J., Roberts, N.M., Fowler, H.J., 2015. Temperature influences on intense UK hourly precipitation and dependency on large-scale circulation. Environ. Res. Let., 10, 5, 054021. https://doi.org/10.1088/1748-9326/10/5/054021 Search in Google Scholar

Bohuš, I., Briedoň, V., Chomicz, K., Intribus, R., Kňazovický, L., Kolodziejek, M., Konček, M., Kurpelová, M., Murínová, G., Myczkowski, S., Orlicz, M., Orliczowa, J., Otruba, J., Pacl, J., Peterka, V., Petrovič, Š., Plesník, P., Pulina, M., Smolen, F., Sokolowska, J., Šamaj, F., Tomlain, J., Volfová, E., Wiszniewski, W., Wit-Jóźwikowa, K., Zych, S., Žák, B., 1974. The Climate of the Tatras. Veda, Bratislava, 856 p. (In Slovak.) Search in Google Scholar

Burlando, P., Rosso, R., 1996. Scaling and multiscaling models of depth-duration-frequency curves for storm precipitation. J. Hydrol., 187, 1–2, 45–64. https://doi.org/10.1016/S0022-1694(96)03086-7 Search in Google Scholar

Cannon, A.J., Sobie, S.R., Murdock, T.Q., 2015. Bias correction of GCM precipitation by quantile mapping: how well do methods preserve changes in quantiles and extremes? J. Climate, 28, 17, 6938–6959. https://doi.org/10.1175/JCLI-D-14-00754.1 Search in Google Scholar

Casas-Castillo, M.d.C., Rodríguez-Solà, R., Llabrés-Brustenga, A., García-Marín, A.P., Estévez, J., Navarro, X., 2022. A simple scaling analysis of rainfall in Andalusia (Spain) under different precipitation regimes. Water, 14, 8, 1303. https://doi.org/10.3390/w14081303 Search in Google Scholar

Casas-Castillo, M.d.C., Rodríguez-Solà, R., Navarro, X., Russo, B., Lastra, A., González, P., Redaño, A., 2018. On the consideration of scaling properties of extreme rainfall in Madrid (Spain) for developing a generalized intensityduration- frequency equation and assessing probable maximum precipitation estimates. Theor. Appl. Climatol., 131, 573–580. https://doi.org/10.1007/s00704-016-1998-0 Search in Google Scholar

Coles, S., 2001. An Introduction to Statistical Modeling of Extreme Values. Springer Series in Statistics. Springer- Verlag. https://doi.org/10.1007/978-1-4471-3675-0 Search in Google Scholar

Das, P., Zhang, Z., Ren, H., 2022. Evaluation of four bias correction methods and random forest model for climate change projection in the Mara River Basin, East Africa. J. Water Clim. Change, 13, 4, 1900–1919. https://doi.org/10.2166/wcc.2022.299 Search in Google Scholar

De Michele, C., Kottegoda, N.T., Rosso, R., 2002. IDAF (intensity-duration-area frequency) curves of extreme storm rainfall: a scaling approach. Water Sci. Technol., 45, 2, 83-90. https://doi.org/10.2166/wst.2002.0031 Search in Google Scholar

Derdour, S., Ghenim, A.N., Megnounif, A., Tangang, F., Chung, J.X., Ayoub, A.B., 2022. Bias correction and evaluation of precipitation data from the CORDEX regional climate model for monitoring climate change in the Wadi Chemora Basin (Northeastern Algeria). Atmosphere, 13, 11, 1876. https://doi.org/10.3390/atmos13111876 Search in Google Scholar

Diedhiou, C.W., Panthou, G., Diatta, S., Sané, Y., Vischel, T., Camara, M., 2024. Simple scaling of extreme precipitation regime in Senegal. Sci. Afr., 23, e02034, https://doi.org/10.1016/j.sciaf.2023.e02034 Search in Google Scholar

Dobor, L., Hlásny, T., 2019. Choice of reference climate conditions matters in impact studies: Case of bias‐corrected CORDEX data set. Int. J. Climatol., 39, 4, 2022–2040. https://doi.org/10.1002/joc.5930 Search in Google Scholar

Cheng, L., AghaKouchak, A., 2014. Nonstationary precipitation intensity-duration-frequency curves for infrastructure design in a changing climate. Sci. Rep., 4, 1, 1–6. https://doi.org/10.1038/srep07093 Search in Google Scholar

Chen, J., Yang, Y., Tang, J., 2022. Bias correction of surface air temperature and precipitation in CORDEX East Asia simulation: What should we do when applying bias correction? Atmos. Res., 280, 106439. https://doi.org/10.1016/j.atmosres.2022.106439 Search in Google Scholar

Feitoza Silva, D., Simonovic, S.P., Schardong, A., Avruch Goldenfum, J., 2021. Introducing non-stationarity into the development of intensity-duration-frequency curves under a changing climate. Water, 13, 8, 1008. https://doi.org/10.3390/w13081008 Search in Google Scholar

Földes, G., Labat, M.M., Kohnová, S., Hlavčová, K., 2022. Impact of changes in short-term rainfall on design floods: Case study of the Hnilec River Basin, Slovakia. Slovak Journal of Civil Engineering, 30, 1, 68–74. https://doi.org/10.2478/sjce-2022-0008 Search in Google Scholar

Friedlingstein, P., Jones, M. W., O'Sullivan, M., Andrew, R. M., Bakker, D. C., Hauck, J. et al., 2022. Global carbon budget 2021. Earth Sys. Sci. Data, 14, 4, 1917–2005. https://doi.org/10.5194/essd-14-1917-2022 Search in Google Scholar

Gampe, D., Schmid, J., Ludwig, R., 2019. Impact of reference dataset selection on RCM evaluation, bias correction, and resulting climate change signals of precipitation. J. Hydrometeorol., 20, 9, 1813–1828. https://doi.org/10.1175/JHM-D-18-0108.1 Search in Google Scholar

Ganguli, P., Coulibaly, P., 2017. Does nonstationarity in rainfall require nonstationary intensity–duration–frequency curves? Hydrol. Earth Sys. Sci., 21, 12, 6461–6483. https://doi.org/10.5194/hess-21-6461-2017 Search in Google Scholar

Ganguli, P., Coulibaly, P., 2019. Assessment of future changes in intensity-duration-frequency curves for Southern Ontario using North American (NA)-CORDEX models with nonstationary methods. J. Hydrol.: Reg. Stud., 22, 100587. https://doi.org/10.1016/j.ejrh.2018.12.007 Search in Google Scholar

Ghimire, U., Srinivasan, G., Agarwal, A., 2019. Assessment of rainfall bias correction techniques for improved hydrological simulation. Int. J. Climatol., 39, 4, 2386–2399. https://doi.org/10.1002/joc.5959 Search in Google Scholar

Gupta, V.K., Waymire, E., 1990. Multiscaling properties of spatial rainfall and river flow distributions. J. Geophys. Res.: Atmospheres, 95(D3), 1999–2009. https://doi.org/10.1029/JD095iD03p01999 Search in Google Scholar

Hempel, S., Frieler, K., Warszawski, L., Schewe, J., Piontek, F., 2013. A trend-preserving bias correction – the ISI-MIP approach. Earth Sys. Dyn., 4, 2, 219–236. https://doi.org/10.5194/esd-4-219-2013 Search in Google Scholar

Haerter, J.O., Hagemann, S., Moseley, C., Piani, C., 2011. Climate model bias correction and the role of timescales. Hydrol. Earth Sys. Sci., 15, 3, 1065–1079. https://doi.org/10.5194/hess-15-1065-2011 Search in Google Scholar

Hlavčová, K., Lapin, M., Valent, P., Szolgay, J., Kohnová, S., Rončák, P., 2015. Estimation of the impact of climate changeinduced extreme precipitation events on floods. Contrib. Geophys. Geod., 45, 3, 173–192. https://doi.org/10.1515/congeo-2015-0019 Search in Google Scholar

Holthuijzen, M., Beckage, B., Clemins, P.J., Higdon, D., Winter, J.M., 2022. Robust bias-correction of precipitation extremes using a novel hybrid empirical quantile-mapping method: Advantages of a linear correction for extremes. Theor. Appl. Climatol., 149, 1, 863–882. https://doi.org/10.1007/s00704-022-04035-2 Search in Google Scholar

Hosseinzadehtalaei, P., Tabari, H., Willems, P., 2018. Precipitation intensity–duration–frequency curves for central Belgium with an ensemble of EURO-CORDEX simulations, and associated uncertainties. Atmos. Res., 200, 1–12. https://doi.org/10.1016/j.atmosres.2017.09.015 Search in Google Scholar

Hui, Y., Xu, Y., Chen, J., Xu, C.Y., Chen, H., 2020. Impacts of bias nonstationarity of climate model outputs on hydrological simulations. Hydrol. Res., 51, 5, 925–941. https://doi.org/10.2166/nh.2020.254 Search in Google Scholar

Ivanov, M.A., Kotlarski, S., 2017. Assessing distribution‐based climate model bias correction methods over an alpine domain: added value and limitations. Int. J. Climatol., 37, 5, 2633-2653. https://doi.org/10.1002/joc.4870 Search in Google Scholar

Johnson, F., Sharma, A., 2012. A nesting model for bias correction of variability at multiple time scales in general circulation model precipitation simulations. Water Resour. Res., 48, 1. https://doi.org/10.1029/2011WR010464 Search in Google Scholar

Katz, R.W., Parlange, M.B., Naveau, P., 2002. Statistics of extremes in hydrology. Adv. Water Resour., 25, 8-12, 1287-1304. https://doi.org/10.1016/S0309-1708(02)00056-8 Search in Google Scholar

Koutsoyiannis, D., Foufoula‐Georgiou, E., 1993. A scaling model of a storm hyetograph. Water Resour. Res., 29, 7, 2345–2361. https://doi.org/10.1029/93WR00395 Search in Google Scholar

Koutsoyiannis, D., Kozonis, D., Manetas, A., 1998. A mathematical framework for studying rainfall intensityduration-frequency relationships, J. Hydrol., 206, 1–2, 118-135. https://doi.org/10.1016/S0022-1694(98)00097-3 Search in Google Scholar

Koutsoyiannis, D., Iliopoulou, T., 2022. Ombrian curves advanced to stochastic modeling of rainfall intensity. In: Morbidelli, R. (Ed.): Rainfall - Modeling, Measurement and Applications. Elsevier, pp. 261–284. https://doi.org/10.1016/B978-0-12-822544-8.00003-2 Search in Google Scholar

Lehner, F., Nadeem, I., Formayer, H., 2020. An improved statistical bias correction method that also corrects dry climate models. Hydrol. Earth Sys. Sci. Discuss., 1–23. https://doi.org/10.5194/hess-2020-515 Search in Google Scholar

Lehner, F., Nadeem, I., Formayer, H., 2023. Evaluating skills and issues of quantile-based bias adjustment for climate change scenarios. Adv. Stat. Climatol., Meteorol. and Oceanogr., 9, 1, 29–44. https://doi.org/10.5194/ascmo-9-29-2023 Search in Google Scholar

Lenderink, G., Barbero, R., Loriaux, J.M., Fowler, H.J., 2017. Super-Clausius–Clapeyron scaling of extreme hourly convective precipitation and its relation to large-scale atmospheric conditions. J. Climate, 30, 15, 6037–6052. https://doi.org/10.1175/JCLI-D-16-0808.1 Search in Google Scholar

Lin, R., Zhu, J., Zheng, F., 2019. The application of the SVD method to reduce coupled model biases in seasonal predictions of rainfall. J. Geophys. Res.: Atmospheres, 124, 22, 11837–11849. https://doi.org/10.1029/2018JD029927 Search in Google Scholar

Mazzoglio, P., Butera, I., Alvioli, M., Claps, P., 2022. The role of morphology in the spatial distribution of short-duration rainfall extremes in Italy. Hydrol. Earth Sys. Sci., 26, 6, 1659–1672. https://doi.org/10.5194/hess-26-1659-2022 Search in Google Scholar

Mehrotra, R., Sharma, A., 2012. An improved standardization procedure to remove systematic low frequency variability biases in GCM simulations. Water Resour. Res., 48, 12. https://doi.org/10.1029/2012WR012446 Search in Google Scholar

Mehrotra, R., Sharma, A., 2019. A resampling approach for correcting systematic spatiotemporal biases for multiple variables in a changing climate. Water Resour. Res., 55, 1, 754–770. https://doi.org/10.1029/2018WR023270 Search in Google Scholar

Meitner, J., Štěpánek, P., Skalák, P., Dubrovský, M., Lhotka, O., Penčevová, R., Zahradníček, P., Farda, A., Trnka, M., 2023. Validation and selection of a representative subset from the ensemble of EURO-CORDEX EUR11 regional climate model outputs for the Czech Republic. Atmosphere, 14, 9, 1442. https://doi.org/10.3390/atmos14091442 Search in Google Scholar

Menabde, M., Seed, A., Pegram, G., 1999. A simple scaling model for extreme rainfall. Water Resour. Res., 35, 1, 335-339. https://doi.org/10.1029/1998WR900012 Search in Google Scholar

Mészáros, J., Halaj, M., Polčák, N., Onderka, M., 2022. Mean annual totals of precipitation during the period 1991–2015 with respect to cyclonic situations in Slovakia. Időjárás/Quarterly Journal of the Hungarian Meteorological Service, 126, 2, 267-284. https://doi.org/10.28974/idojaras.2022.2.6 Search in Google Scholar

Miao, C., Ashouri, H., Hsu, K.L., Sorooshian, S., Duan, Q., 2015. Evaluation of the PERSIANN-CDR daily rainfall estimates in capturing the behavior of extreme precipitation events over China. J. Hydrometeorol., 16, 3, 1387–1396. https://doi.org/10.1175/JHM-D-14-0174.1 Search in Google Scholar

Molnar, P., Burlando, P., 2005. Preservation of rainfall properties in stochastic disaggregation by a simple random cascade model. Atmos. Res., 77, 1–4, 137–151. https://doi.org/10.1016/j.atmosres.2004.10.024 Search in Google Scholar

National Weather Service, 2022. Analysis of Impact of Nonstationary Climate on NOAA Atlas 14 Estimates: Assessment Report. Available at: https://hdsc.nws.noaa.gov/hdsc/files25/NA14_Assessment_report_202201v1.pdf Accessed 05 May. 2024. Search in Google Scholar

Ngai, S.T., Juneng, L., Tangang, F., Chung, J.X., Supari, S., Salimun, E. et al., 2022. Projected mean and extreme precipitation based on bias-corrected simulation outputs of CORDEX Southeast Asia. Weather Clim. Extremes, 37, 100484. https://doi.org/10.1016/j.wace.2022.100484 Search in Google Scholar

Nguyen, H., Mehrotra, R., Sharma, A., 2016. Correcting for systematic biases in GCM simulations in the frequency domain. J. Hydrol., 538, 117–126. https://doi.org/10.1016/j.jhydrol.2016.04.018 Search in Google Scholar

Nhat, L.M., Tachikawa Y., Sayama T., Takara K., 2007. Regional rainfall intensity duration frequency relationships for ungauged catchments based on scaling properties. Annuals of Disas. Prev. Res. Inst., Kyoto Univ., 50 B, 33–43. Available at: https://hywr.kuciv.kyoto-u.ac.jp/publications/papers/2007DPRI_Nhat.pdf Accessed 15 Apr. 2024. Search in Google Scholar

Onderka, M., Pecho, J., 2021. Sensitivity of selected summertime rainfall characteristics to pre-event atmospheric and near-surface conditions. Atmos. Res., 259, 105671. https://doi.org/10.1016/j.atmosres.2021.105671 Search in Google Scholar

Onderka, M., Pecho, J., Bodinger, L., Bičárová, S., Lukasová, V., Buchholcerová, A., Nejedlík, P., 2022. Relationships between intensity, duration and frequency of short-term rains determined by Bayesian inference of GEV distribution parameters. Meteorogické zprávy /Meteorol. Rep., 75, 3, 81-88. (In Slovak.) Search in Google Scholar

Onderka, M., Sokáč, M., Mikulová, K., Pecho, J., 2023. Digital atlas of rainfall design intensities in Slovakia. Meteorologický Časopis/Meteorol. J., 26, 1, 27–38. https://www.shmu.sk/File/met_cas/RR/2023-1_3%20Onderka.pdf Accessed 15 Apr. 2024. Search in Google Scholar

Osuch, M., Romanowicz, R.J., Lawrence, D., Wong, W.K., 2016. Trends in projections of standardized precipitation indices in a future climate in Poland. Hydrol. Earth Sys. Sci., 20, 5, 1947-1969. https://doi.org/10.5194/hess-20-1947-2016 Search in Google Scholar

Piani, C., Haerter, J.O., Coppola, E., 2010. Statistical bias correction for daily precipitation in regional climate models over Europe. Theor. Appl. Climatol. 99, 187–192. https://doi.org/10.1007/s00704-009-0134-9 Search in Google Scholar

Poschlod, B., Ludwig, R., Sillmann, J., 2021. Ten-year return levels of sub-daily extreme precipitation over Europe. Earth Sys. Sci. Data, 13, 3, 983–1003. https://doi.org/10.5194/essd-13-983-2021 Search in Google Scholar

Ragno, E., AghaKouchak, A., Cheng, L., Sadegh, M., 2019. A generalized framework for process-informed nonstationary extreme value analysis. Adv. Water Resour., 130, 270–282. https://doi.org/10.1016/j.advwatres.2019.06.007 Search in Google Scholar

Rosso, R., Burlando, P., 1990. Scale invariance in temporal and spatial rainfall. In: Proceedings of XV General Assembly European Geophysical Society, Annales Geophysicae, 145, 23–27 April 1990, Copenhagen, Denmark. Search in Google Scholar

Šamaj, F., 1959. Daily patterns of precipitation in the Danubian lowland and in the Tatra region. Acta Facultatis Rerum Naturalium Universitatis Comenianae, Meteorologia, 161–194. (In Slovak.) Search in Google Scholar

Shaw, S.B., Royem, A.A., Riha, S.J., 2011. The relationship between extreme hourly precipitation and surface temperature in different hydroclimatic regions of the United States. J. Hydrometeorol., 12, 2, 319–325. https://doi.org/10.1175/2011JHM1364.1 Search in Google Scholar

Shin, J.Y., Lee, T., Park, T., Kim, S., 2019. Bias correction of RCM outputs using mixture distributions under multiple extreme weather influences. Theor. Appl. Climatol., 137, 201–216. https://doi.org/10.1007/s00704-018-2585-3 Search in Google Scholar

Schmith, T., Thejll, P., Berg, P., Boberg, F., Christensen, O.B., Christiansen, B., Christensen, J.H., Madsen, M.S., Steger, C., 2021. Identifying robust bias adjustment methods for European extreme precipitation in a multi-model pseudoreality setting. Hydrol. Earth Sys. Sci., 25, 1, 273–290. https://doi.org/10.5194/hess-25-273-2021 Search in Google Scholar

Schroeer, K., Kirchengast, G., 2018. Sensitivity of extreme precipitation to temperature: the variability of scaling factors from a regional to local perspective. Clim. Dynam., 50, 3981–3994. https://doi.org/10.1007/s00382-017-3857-9 Search in Google Scholar

Schwalm, C.R., Glendon, S., Duffy, P.B., 2020. RCP8.5 tracks cumulative CO2 emissions. Proceedings of the National Academy of Sciences, 117, 33, 19656–19657. https://doi.org/10.1073/pnas.2007117117 Search in Google Scholar

Singh, V.P., 2016. Handbook of Applied Hydrology, 2nd Ed. McGraw-Hill Education, New York, USA, 1440 p. Szabó-Takács, B., Farda, A., Skalák, P., Meitner, J., 2019. Influence of bias correction methods on simulated Köppen−Geiger climate zones in Europe. Clim., 7, 2, 18. https://doi.org/10.3390/cli7020018 Search in Google Scholar

Szolgay J., Miklánek J., Výleta R., 2023. Interactions of natural and anthropogenic drivers and hydrological processes on local and regional scales: A review of main results of Slovak hydrology from 2019 to 2022. Acta Hydrologica Slovaca, 24, 2, 254–265. https://doi.org/10.31577/ahs-2023-0024.02.0028 Search in Google Scholar

Teutschbein, C., Seibert, J., 2013. Is bias correction of regional climate model (RCM) simulations possible for non-stationary conditions? Hydrol. Earth Sys. Sci., 17, 12, 5061–5077. https://doi.org/10.5194/hess-17-5061-2013 Search in Google Scholar

Tootoonchi, F., Todorović, A., Grabs, T., Teutschbein, C., 2023. Uni-and multivariate bias adjustment of climate model simulations in Nordic catchments: Effects on hydrological signatures relevant for water resources management in a changing climate. J. Hydrol., 623, 129807. https://doi.org/10.1016/j.jhydrol.2023.129807 Search in Google Scholar

Vyshnevskyi, V., Shevchuk, S., 2022. Impact of climate change and human factors on the water regime of the Danube Delta. Acta Hydrologica Slovaca, 23, 2, 207–216. https://doi.org/10.31577/ahs-2022-0023.02.0023 Search in Google Scholar

Wasko, C., Sharma, A., 2015. Steeper temporal distribution of rain intensity at higher temperatures within Australian storms. Nat. Geosci., 8, 7, 527–9. https://doi.org/10.1038/ngeo2456 Search in Google Scholar

Wasko, C., Sharma, A., 2017. Continuous rainfall generation for a warmer climate using observed temperature sensitivities. J. Hydrol., 544, 575–90. https://doi.org/10.1016/j.jhydrol.2016.12.002 Search in Google Scholar

Wood, A.W., Leung, L.R., Sridhar, V., Lettenmaier, D.P., 2004. Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Clim. Change, 62, 1, 189–216. https://doi.org/10.1023/B:CLIM.0000013685.99609.9e Search in Google Scholar

Yu, P.S., Yang, T.C., Lin, C.S., 2004. Regional rainfall intensity formulas based on scaling property of rainfall. J. Hydrol., 295, 1–4, 108–123. https://doi.org/10.1016/j.jhydrol.2004.03.003 Search in Google Scholar

Zhao, W., Kinouchi, T., Nguyen, H.Q., 2021. A framework for projecting future intensity-duration-frequency (IDF) curves based on CORDEX Southeast Asia multi-model simulations: An application for two cities in Southern Vietnam. J. Hydrol., 598, 126461. https://doi.org/10.1016/j.jhydrol.2021.126461 Search in Google Scholar

Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Ingénierie, Présentations et aperçus, Ingénierie, autres